## Does the limit exist at the origin?

$$\frac{\sin(x^2+y^2)}{x^2+y^2}$$

**TABLE 1** Values of f(x, y)

| x    | -1.0  | -0.5  | -0.2  | 0     | 0.2   | 0.5   | 1.0   |
|------|-------|-------|-------|-------|-------|-------|-------|
| -1.0 | 0.455 | 0.759 | 0.829 | 0.841 | 0.829 | 0.759 | 0.455 |
| -0.5 | 0.759 | 0.959 | 0.986 | 0.990 | 0.986 | 0.959 | 0.759 |
| -0.2 | 0.829 | 0.986 | 0.999 | 1.000 | 0.999 | 0.986 | 0.829 |
| 0    | 0.841 | 0.990 | 1.000 |       | 1.000 | 0.990 | 0.841 |
| 0.2  | 0.829 | 0.986 | 0.999 | 1.000 | 0.999 | 0.986 | 0.829 |
| 0.5  | 0.759 | 0.959 | 0.986 | 0.990 | 0.986 | 0.959 | 0.759 |
| 1.0  | 0.455 | 0.759 | 0.829 | 0.841 | 0.829 | 0.759 | 0.455 |

$$\frac{x^2 - y^2}{x^2 + y^2}$$

**TABLE 2** Values of g(x, y)

|   | xy   | -1.0   | -0.5   | -0.2   | 0     | 0.2    | 0.5    | 1.0    |
|---|------|--------|--------|--------|-------|--------|--------|--------|
|   | -1.0 | 0.000  | 0.600  | 0.923  | 1.000 | 0.923  | 0.600  | 0.000  |
|   | -0.5 | -0.600 | 0.000  | 0.724  | 1.000 | 0.724  | 0.000  | -0.600 |
|   | -0.2 | -0.923 | -0.724 | 0.000  | 1.000 | 0.000  | -0.724 | -0.923 |
| , | 0    | -1.000 | -1.000 | -1.000 |       | -1.000 | -1.000 | -1.000 |
|   | 0.2  | -0.923 | -0.724 | 0.000  | 1.000 | 0.000  | -0.724 | -0.923 |
|   | 0.5  | -0.600 | 0.000  | 0.724  | 1.000 | 0.724  | 0.000  | -0.600 |
|   | 1.0  | 0.000  | 0.600  | 0.923  | 1.000 | 0.923  | 0.600  | 0.000  |

$$\frac{\sin(x^2+y^2)}{x^2+y^2}$$



$$\frac{x^2 - y^2}{x^2 + y^2}$$



# **Contours: When to be suspicious**

$$\frac{x^2 - y^2}{x^2 + y^2}$$



$$\frac{x^2y}{x^2+y^2}$$





$$e^{-x^2-y^2}$$



$$\frac{x^2y}{x^2+y^2}$$

$$\frac{x^2 + \sin^2(y)}{2x^2 + y^2}$$





$$\frac{x^3 + y^3}{x^2 + y^2}$$



$$\frac{xy}{\sqrt{x^2 + y^2}}$$

