Selected Solutions, Chapter 15 Review

T/F, 7 False. Notice that the r is missing: It should be $r dz dr d\theta$

10.
$$\int_0^4 \int_{y-4}^{4-y} f(x,y) \, dx \, dy$$

12. The region is in the first octant on or between the spheres of radius 1 and radius 2.

14.
$$\int_0^1 \int_0^{x^2} \frac{y e^{x^2}}{x^3} \, dy \, dx = \frac{1}{4} (e - 1)$$

18. Best to integrate in y first (otherwise you have to add two integrals together):

$$\int_0^1 \int_x^1 \frac{1}{1+x^2} \, dy \, dx = \int_0^1 \frac{1}{1+x^2} - \frac{x}{1+x^2} \, dx$$

The first antiderivative is $\tan^{-1}(x)$. To do the second, we can use $u = 1 + x^2$ and du = 2x dx. Numerically, we get:

$$\tan^{-1}(1) - \tan^{-1}(0) - \frac{1}{2}\ln(2) + \frac{1}{2}\ln(1) = \frac{\pi}{4} - \frac{1}{2}\ln(2)$$

20.
$$\int_{1}^{2} \int_{1/y}^{y} y \, dx \, dy = \frac{4}{3}$$

26. (See figure)
$$\int_0^1 \int_0^{\sqrt{1-y^2}} \int_0^{2-y} z \, dx \, dz \, dy = \frac{13}{24}$$

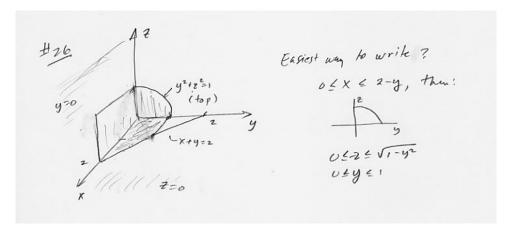


Figure 1: Figure for Exercise 26, Chapter 15 Review

30.
$$\int_0^1 \int_{y+1}^{4-2y} \int_0^{x^2y} dz \, dx \, dy = \frac{53}{20}$$

46. See the figure below.

Selected Solutions, Chapter 16 Review

True/False (2) True, (4) True, (6) False (the arc length is independent of the parameterization), (8) False, since the divergence of the curl is not zero.

- 2. $\frac{1}{12}(5\sqrt{5}-1)$
- 4. Conservative vector field, so 0.

Side Remark: If you were curious, to get the parameterization re-write the ellipse in standard form:

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 \Rightarrow $x(t) = 3\cos(t)$ $y(t) = 2\sin(t)$

- 6. $e \frac{9}{70}$
- 8. $\pi/4$
- 10. In part (a), parameterize as x = 3 3t, $y = \frac{\pi}{2}t$, z = 3t for $0 \le t \le 1$. With that, get $\frac{1}{2}(3\pi 9)$.

In part (b), you should get $-3\pi/4$ (notice that this vector field is not path independent).

- 14. 2
- 16. 3
- 18. Messy, but straightforward:

$$\langle -e^{-y}\cos(z), -e^{-z}\cos(x), -e^{-x}\cos(y)\rangle$$

The divergence does not simplify too nicely, either:

$$-e^{-x}\sin(y) - e^{-y}\sin(z) - e^{-z}\sin(x)$$

38. Deleted

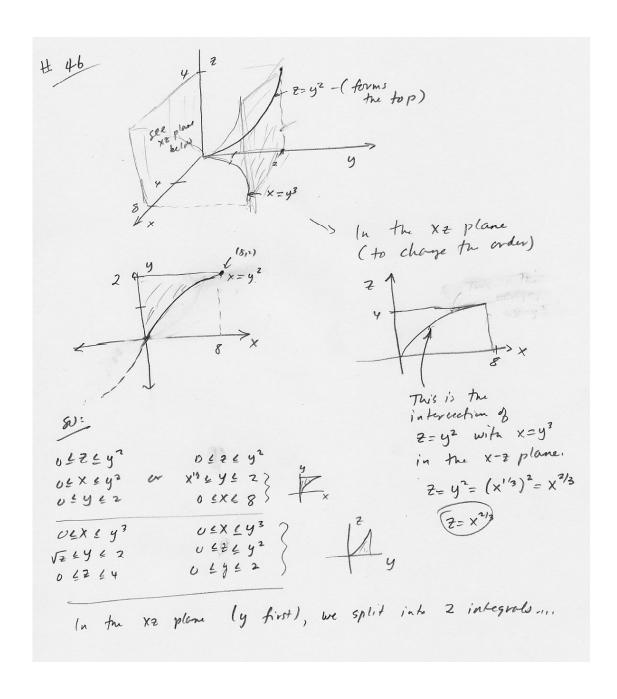


Figure 2: Figure for Exercise 46, Chapter 15 Review