34. The dimensions of a closed rectangular box are measured as 80 cm, 60 cm, and 50 cm, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box.

SOLUTION: Let the dimensions of the box be l, w and h (for length, width and height). The surface area is then:

$$ S(l, w, h) = 2lw + 2wh + 2lh = 2(lw + wh + lh) $$

The change in area can be written as:

$$ \Delta S \approx dS = S_l \, dl + S_w \, dw + S_h \, dh $$

where the partial derivatives are evaluated at $l = 80$, $w = 60$ and $h = 50$, and $dl = dw = dh = 0.2$.

The partial derivatives are computed:

$$ S_l = 2(w + h) = 220 \quad S_w = 2(l + h) = 260 \quad S_h = 2(l + w) = 280 $$

Substituting these in for dS,

$$ dS = 220 \cdot 0.2 + 260 \cdot 0.2 + 280 \cdot 0.2 = 152 \text{ cm}^2 $$

35. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height 12 cm if the tin is 0.04 cm thick.

SOLUTION: The volume of the can is

$$ V(r, h) = \pi r^2 h $$

Using differentials,

$$ \Delta V \approx dV = V_r \, dr + V_h \, dh $$

with $r = 4$ and $h = 12$, $dr = 0.04$ and $dh = 2 \cdot 0.04 = 0.08$.

Compute the partial derivatives out and we get:

$$ dV = 2\pi rh \, dr + \pi r^2 \, dh $$

Substitute in the numerical values:

$$ dV = 3.84\pi + 1.28\pi \approx 16.08 \text{ cm}^3 $$

(The book rounds off a little too much)
36. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick.

SOLUTION: Same volume equation as before \((V = \pi r^2 h)\):

\[
dV = 2\pi rh \, dr + \pi r^2 h \, dh
\]

In this case, \(r = 2\), \(h = 10\), \(dr = 0.05\) and \(dh = 2 \cdot 0.1 = 0.2\). Substituting these values in, we get:

\[
dV = 2.80\pi \approx 8.8 \text{ cm}^3
\]

37. A boundary stripe is 3 inches wide and is painted around a rectangle whose dimensions are 100 \(\times\) 200 feet. Use differentials to approximate the number of square feet of paint in the stripe.

SOLUTION: Use the area: \(A = xy\), so that

\[
\Delta A \approx dA = A_x \, dx + A_y \, dy = y
\]

Notice that the change in \(x\) will be twice the width of a stripe (in feet), so

\[
dx = dy = 6 \text{ in} = 1/2 \text{ ft}
\]

Substituting these in,

\[
dA = 100 \cdot \frac{1}{2} + 200 \cdot \frac{1}{2} = 150 \text{ ft}^2
\]

38. Given that pressure, volume and temperature of a gas are related by:

\[
PV = 8.31T
\]

use differentials to find the approximate change in pressure if the volume increases from 12L to 12.3L and temperature decreases from 310 Kelvin to 305 Kelvin.

SOLUTION: A couple of ways to go about this. Easiest way might be to first write \(P\) as a function of \(T, V\) since we want to approximate \(\Delta P:\)

\[
P = 8.31 \frac{T}{V} \Rightarrow dP = \frac{8.31}{V} \, dT - \frac{8.31T}{V^2} \, dV
\]

with \(T = 310, \, dT = -5, \, V = 12\) and \(dV = 0.3\). Substitute these in:

\[
dP = \frac{8.31}{12} \cdot (-5) - \frac{8.31 \cdot 310}{12^2} \cdot 0.3 \approx -8.83
\]
41. A model for the surface area of a human body is given by

\[S = 0.109w^{0.425}h^{0.725} \]

where \(w \) is weight (in pounds), \(h \) is in feet, and \(S \) in square feet. If the errors in measuring \(w \) and \(h \) are at most 2%, use differentials to estimate the maximum percentage error in calculating S.A.

SOLUTION: The percentage error is given by:

\[\frac{\Delta S}{S} \approx \frac{dS}{S} = \frac{S_w \, dw + S_h \, dh}{S} \]

We are also given: \(dw = 0.02w \) and \(dh = 0.02h \). Now,

\[\frac{S_w}{S} \, dw = \frac{(0.109 \cdot 0.425)w^{0.425-1}h(0.02)w}{S} = 0.425 \cdot 0.02 \]

Similarly,

\[\frac{S_h}{S} \, dh = \frac{0.109 \cdot 0.725w^{0.425}h^{0.725-1}0.02h}{S} = 0.725 \cdot 0.02 \]

Add them together to get the desired result: 0.023, or about 2.3%.

For fun, did you see how much surface area you have?