This is a **group quiz**, so you should speak to your neighbor(s). You may use a calculator, your notes and/or the textbook.

- 1. If the curve C is parameterized by $\langle t^2 t, 2t + 4 \rangle$, then compute:
 - (a) ds =
 - (b) $d\vec{r} =$
 - (c) Set up the arc length integral for $0 \le t \le 1$.
- 2. If the surface S is parameterized by $\langle x, y, 3x^2 xy + 5 \rangle$ then compute:
 - (a) $\vec{r}_x \times \vec{r}_y =$
 - (b) $d\vec{S} =$

- dS =
- (c) Set up the integral for the surface area over the rectangle $0 \le x \le 3, -1 \le y \le 2$
- (d) The surface normal, $\vec{n} =$
- (e) If the vector field $\vec{F}=\langle x,y,z^2\rangle,$ set up the integral: $\iint_S \vec{F}\cdot d\vec{S}$

3. Is
$$\int_C \vec{F} \cdot d\vec{r} = \int_C f(x, y) ds$$
? Explain.

4. Is
$$\iint_D g(x, y, z) dS = \iint_S \vec{F} \cdot d\vec{S}$$
? Explain.

5. Is
$$\int_C \vec{F} \cdot d\vec{r} = \int_C P \, dx + Q \, dy$$
?

6. Is
$$\iint_S \vec{F} \cdot d\vec{S} = \iint_S \vec{F} \cdot \vec{n} \, dS$$
?

7. Given surface S over domain D, is
$$\iint_S \vec{F} \cdot dS = \iint_D \vec{F} \cdot (\vec{r}_x \times \vec{r}_y) dA$$
?

8. Set up the integral (DO NOT EVALUATE) representing the flux of \vec{F} across the surface S, if the orientation is upward, and

$$\vec{F} = \langle y, x, z^2 \rangle$$
 $z = 4 - x^2 - y^2$ $0 \le x \le 1, 0 \le y \le 1$

9. Set up the integral for the surface area of 4x - 2y + 2z = 4 above the unit circle in the plane.

10. Set up the integral $\iint_S y \, dS$, if the surface is given by the part of the cone $x^2 + y^2 = z^2$ that lies between the planes z = 1 and z = 3.