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Furthermore, it f is differentiable at x = a, then it should be continuous at
x = a (True in Calc I).

How should “Differentiable” be defined?

A function z = f(x, y) should be “differentiable” at (a, b) if it is locally
linear there.

z—f(a,b) = f(a, b)(x — a) + f,(a, b)(y — b)

f(x,y) = L(x,y) = f(a,b) + £(a, b)(x — a) + f,(a, b)(y — b)

This should guarantee the existence of the partial derivatives and the
continuity of z = f(x, y) at a point (a, b).
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N
Main Point:

It is not enough to say that the partial derivatives exist at a point.
In the example, we will see that:
e f, and f, both exist at a point (a, b), but f is not locally linear at
(a, b).
e f, and f, both exist at a point (a, b), but f is not continuous at (a, b).
“Differentiable” is a stronger condition than existence of the partial

derivatives,
But if the partial derivatives are continuous at (a, b), then f is

differentiable there (in the sense of being locally linear).

February 23, 2010 5/ 11



Example:

2L (x,y) #(0,0)

f(x’”:{ 0 (x,y)=(0,0)
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Show that £,(0,0) and £,(0,0) both exist:
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0 (x,y)=(0,0)
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Show that £,(0,0) and £,(0,0) both exist:

£(0.0) = fim f(0+h,0) — £(0,0) _
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Show that £,(0,0) and £,(0,0) both exist:

F(0+ h,0) — f -
K(0, 0)_/ll—>o = ’Oi)7 (O’O)ZhiLnoo :

Similarly, £,(0,0) = 0.
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Similarly, £,(0,0) = 0.
This function is NOT continuous at the origin (consider y = x and

y = —x).
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Show that £,(0,0) and £,(0,0) both exist:

0+ h0)—F(0,0) . 0-0
K(0,0) = /!ino h N IlinOT =0

Similarly, £,(0,0) = 0.

This function is NOT continuous at the origin (consider y = x and
y = —x).

The partial derivatives may exist, even though the function is not
continuous at a point.
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Summary:

The definition of differentiability is somewhat complicated. We will use
the following theorem instead:
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Summary:

The definition of differentiability is somewhat complicated. We will use
the following theorem instead:

Differentiability Theorem

If the partial derivatives exist and are continuous on a small disk centered
at (a, b), then z = f(x, y) is differentiable at (a, b).
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If z = f(x, y) is differentiable at (a, b), then we can use the tangent plane
to approximate it. That is, either directly:

z — f(a, b) = fi(a, b)(x — a) + f,(a, b)(y — b)

Or indirectly: Let dx = Ax =x —aand dy = Ay =y — b. Then the
total differential dz is approximately Az,

Az =~ dz = f(a, b) dx + f,(a, b) dy
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to approximate (6.9,2.06)
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1 f(7,2)= —
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Find the linear approximation to f(x,y) = In(x — 3y) at (7,2) and use it
to approximate (6.9,2.06)
SOLUTION:
1 _
1 f(7,2)= —
X = 3y x=7,y=2 X 3y x=7,y=2

= -3

£(7,2) =

Therefore, using (7,2) = In(1) = 0, we have:
f(x,y) ~0+1(x—7)—3(y —2)=x—-3y—1

Now, use dx = Ax =6.9 —7.0=—0.1 and dy = Ay = 2.06 —2 = 0.06
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X = 3y x=7,y=2 X 3y x=7,y=2

= -3

£(7,2) =

Therefore, using (7,2) = In(1) = 0, we have:
f(x,y) ~0+1(x—7)—3(y —2)=x—-3y—1
Now, use dx = Ax =6.9 —7.0=—0.1 and dy = Ay = 2.06 —2 = 0.06

£(6.9,2.06) ~ 0+ 1- (—0.1) — 3(0.06) = —0.28
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