$$z = x^2 - 2xy + y^2 - 2$$
 at $x = 1, y = -1, z = 2$

$$u = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

Compute u_{x_1} and u_{x_4}

$$u = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

Compute u_{x_1} and u_{x_4} SOLUTION:

$$u_{x_1} = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-1/2}(2x_1) =$$

$$u = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

Compute u_{x_1} and u_{x_4} SOLUTION:

$$u_{x_1} = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-1/2}(2x_1) = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}}$$

And u_{x_4} is found in a similar way:

$$u = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

Compute u_{x_1} and u_{x_4} SOLUTION:

$$u_{x_1} = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-1/2}(2x_1) = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}}$$

And u_{x_4} is found in a similar way:

$$u_{x_4} =$$

$$u = \sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}$$

Compute u_{x_1} and u_{x_4} SOLUTION:

$$u_{x_1} = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-1/2}(2x_1) = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}}$$

And u_{x_4} is found in a similar way:

$$u_{x_4} = \frac{x_4}{\sqrt{x_1^2 + x_2^2 + x_3^2 + x_4^2}}$$

(88) The paraboloid $z = 6 - x - x^2 - 2y^2$ intersects the plane x = 1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1, 2, -4), and graph.

(88) The paraboloid $z=6-x-x^2-2y^2$ intersects the plane x=1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1,2,-4), and graph. SOLUTION: The parabola is found by setting x=1

$$z = 4 - 2y^2 \quad \Rightarrow \quad z_y = -4y$$

The derivative at y = 2 is -8. The tangent line therefore has direction

(88) The paraboloid $z = 6 - x - x^2 - 2y^2$ intersects the plane x = 1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1, 2, -4), and graph. SOLUTION: The parabola is found by setting x = 1

$$z = 4 - 2y^2 \quad \Rightarrow \quad z_y = -4y$$

The derivative at y=2 is -8. The tangent line therefore has direction (we're not moving in x, just in y): (0,1,-8), and the tangent line is therefore:

(88) The paraboloid $z=6-x-x^2-2y^2$ intersects the plane x=1 in a parabola. Find the parametric equations for the tangent line to this parabola at the point (1,2,-4), and graph. SOLUTION: The parabola is found by setting x=1

$$z = 4 - 2y^2 \quad \Rightarrow \quad z_y = -4y$$

The derivative at y=2 is -8. The tangent line therefore has direction (we're not moving in x, just in y): (0,1,-8), and the tangent line is therefore:

$$x = 1$$
 $y = 2 + t$ $z = -4 - 8t$

A Special Function

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

A Special Function

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
$$f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

Recall: If $(x, y) \neq (0, 0)$, then

$$f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$$

Does $f_x(0,0)$ exist? (Use the definition!)

$$f_x(0,0) = \lim_{h\to 0} \frac{f(0,h) - f(0,0)}{h} =$$

Recall: If $(x, y) \neq (0, 0)$, then

$$f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$$

Does $f_x(0,0)$ exist? (Use the definition!)

$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0-0}{h} = 0$$

Recall: If $(x, y) \neq (0, 0)$, then

$$f(x,y) = \frac{x^3y - xy^3}{x^2 + y^2}$$

Does $f_x(0,0)$ exist? (Use the definition!)

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0$$

Similarly, $f_y(0,0) = 0$.

If $(x, y) \neq (0, 0)$, then

$$f_{xy} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} = f_{yx}$$

Continuous at the origin?

If $(x, y) \neq (0, 0)$, then

$$f_{xy} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} = f_{yx}$$

Continuous at the origin?

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

$$f_{xy}(0,0) =$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

$$f_{xy}(0,0) = \lim_{h\to 0} \frac{f_x(0,h) - f_x(0,0)}{h} =$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h^5}{h^5} = -1$$

$$f_{vx}(0,0) =$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h^5}{h^5} = -1$$

$$f_{yx}(0,0) = \lim_{h\to 0} \frac{f_x(h,0) - f_x(0,0)}{h} =$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h^5}{h^5} = -1$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_x(h,0) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{h^5}{h^5} =$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h^5}{h^5} = -1$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_x(h,0) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{h^5}{h^5} = 1$$

$$f_x(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$
 $f_y(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$

Compute, using the definition:

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h^5}{h^5} = -1$$

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_x(h,0) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{h^5}{h^5} = 1$$

Therefore,

$$f_{xy}(0,0) \neq f_{yx}(0,0)$$

(even though they are equal everywhere else!)