
Definition

A function z = f (x , y) has a local minimum at a point (a, b) if there is a
disk about (a, b) so that f (a, b) ≤ f (x , y) for all (x , y) in the disk.

Vocab: The point (a, b) is the minimizer, the value f (a, b) is the minimum.

Definition

A function z = f (x , y) has a local maximum at a point (a, b) if there is a
disk about (a, b) so that f (a, b) ≥ f (x , y) for all (x , y) in the disk.

Definition

A function z = f (x , y) has a global min (max) at a point (a, b) in a given
region D if f (a, b) is the smallest (largest) point in all of D (could be
equality, too- There could be multiple max’s and min’s).
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As in Calc I, we have the Extreme Value Theorem:

Theorem

If z = f (x , y) is continuous on a closed and bounded region in the plane,
D, then f attains a global max and min on D.

“Closed” - Includes all of its boundary.

“Bounded”- Could be put in a circle with finite radius.

Definition

The critical points of z = f (x , y) are points where ∇f = 0 or either (or
both) partial derivatives do not exist.
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In the case that the EVT applies (global max/min on a closed and
bounded domain), the candidates for where the max/min can occur:

Critical points

Boundary

Check them, and find the max/min on each (build a table).
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Example: Find the global max and global min:

f (x , y) = 5 + x2 + x − 2y2 − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1

SOLUTION: Find critical points:

fx(x , y) = 2x + 1 fy (x , y) = −4y ⇒ (−1/2, 0)

Value of f at the critical point: 4.75.
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Check the boundary:

f (x , y) = 5 + x2 + x − 2y2 for x = 1, −1 ≤ y ≤ 1:

f (1, y) = 7− 2y2 − 1 ≤ y ≤ 1

y f (1, y)

−1 f (1,−1) = 5
0 f (1, 0) = 7
1 f (1, 1) = 5

x = −1, −1 ≤ y ≤ 1:

f (−1, y) = 5− 2y2 − 1 ≤ y ≤ 1

y f (1, y)

−1 f (−1,−1) = 3
0 f (−1, 0) = 5
1 f (−1, 1) = 3
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f (x , y) = 5 + x2 + x − 2y2 for −1 ≤ x ≤ 1, y = −1:

f (x ,−1) = x2 + x + 3 − 1 ≤ x ≤ 1

x f (x ,−1)

−1 f (−1,−1) = 3
−1/2 f (−1/2,−1) = 2.75

1 f (1,−1) = 5

For y = −1, we have the same function and same interval.
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Conclusion:
The global maximum is 7, it occurs at (1, 0) on the boundary. The global
minimum is 2.75, it occurs twice on the boundary, at (−1/2,±1).
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Local Extrema

To find local extrema, in Calc I we had the first and second derivative
tests. It is not easy to find a substitute- A surface can be both CU and CD
at a saddle point.
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The Second Derivatives Test

Let

D(a, b) =

∣∣∣∣ fxx(a, b) fxy (a, b)
fyx(a, b) fyy (a, b)

∣∣∣∣ = fxx(a, b)fyy (a, b)− f 2
xy (a, b)

Then, if

If D > 0 and fxx(a, b) > 0 (takes the place of CU), f (a, b) is a local
min.

If D > 0 and fxx(a, b) < 0 (takes the place of CD), f (a, b) is a local
max.

If D < 0, we get neither (SADDLE POINT)

If D = 0, the test fails (we could have local max, local min or saddle).
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Example: Classify the Critical Points

f (x , y) = 3y3 + 9y2 − 3xy +
1

2
x2 + 9y − 9x

Compute the partials:

fx = −3y + x − 9 fy = 9y2 + 18y − 3x + 9

And the second partials:

fxx = 1 fxy = −3 fyy = 18y + 18
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Critical points

−3y + x − 9 = 0 and 9y2 + 18y − 3x + 9 = 0

Substitute x = 3(y + 3) into the second to eliminate x :

9y2 + 18y − 9(y + 3) + 9 = 9y2 + 9y − 18 = 0 ⇒ y2 + y − 2 = 0

Therefore, y = −2 and y = 1. Backsub to get the ordered pairs:

(3,−2) (12, 1)
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Do the Second Derivatives test on each CP; simplify first:

D(x , y) = (1)(18y + 18)− (−3)2 = 18y + 9

So, at (3,−2), D(3,−2) = −36 + 9 < 0 so that is a SADDLE POINT.
At (12, 1), we have D(12, 1) = 18 + 9 > 0, and fxx > 0, so we have
aLOCAL MIN.
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Example

Find the local maximum, minimum and saddle points. Verify your answer
by locating these points on the plot of level curves.

g(x , y) = xy(1− x − y)

SOLUTION: Find the critical points, then classify according to the Second
Derivatives Test. First, we’ll compute the partial derivatives (and the
seconds):

gx = y(1− 2x − y) gxx = −2y gxy = 1− 2x − 2y

gy = x(1− x − 2y) gyy = −2x
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Solving for the critical points,

y(1− 2x − y) = 0 ⇒ y = 0 or y = 1− 2x

In the case that y = 0, we have:

x(1− x) = 0 ⇒ x = 0 or x = 1

So far, we have two critical points, (0, 0) and (1, 0). If y = 1− 2x , then:

x(1− x − 2(1− 2x)) = 0 ⇒ x = 0 or x = 1/3

Now we have two more fixed points: (0, 1) or (1/3, 1/3).
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In each case apply the Second Derivatives Test:

D = gxxgyy − g2
xy = 4xy − (1− 2x − 2y)2

Point D gxx Result

(0, 0) −1 N/A Saddle
(1, 0) −1 N/A Saddle
(0, 1) −1 N/A Saddle

(1/3, 1/3) 1/3 −2/3 Local Max

() March 10, 2009 16 / 23



In each case apply the Second Derivatives Test:

D = gxxgyy − g2
xy = 4xy − (1− 2x − 2y)2

Point D gxx Result

(0, 0) −1 N/A

Saddle
(1, 0) −1 N/A Saddle
(0, 1) −1 N/A Saddle

(1/3, 1/3) 1/3 −2/3 Local Max

() March 10, 2009 16 / 23



In each case apply the Second Derivatives Test:

D = gxxgyy − g2
xy = 4xy − (1− 2x − 2y)2

Point D gxx Result

(0, 0) −1 N/A Saddle
(1, 0) −1 N/A

Saddle
(0, 1) −1 N/A Saddle

(1/3, 1/3) 1/3 −2/3 Local Max

() March 10, 2009 16 / 23



In each case apply the Second Derivatives Test:

D = gxxgyy − g2
xy = 4xy − (1− 2x − 2y)2

Point D gxx Result

(0, 0) −1 N/A Saddle
(1, 0) −1 N/A Saddle
(0, 1) −1 N/A

Saddle
(1/3, 1/3) 1/3 −2/3 Local Max

() March 10, 2009 16 / 23



In each case apply the Second Derivatives Test:

D = gxxgyy − g2
xy = 4xy − (1− 2x − 2y)2

Point D gxx Result

(0, 0) −1 N/A Saddle
(1, 0) −1 N/A Saddle
(0, 1) −1 N/A Saddle

(1/3, 1/3) 1/3 −2/3

Local Max

() March 10, 2009 16 / 23



In each case apply the Second Derivatives Test:

D = gxxgyy − g2
xy = 4xy − (1− 2x − 2y)2

Point D gxx Result

(0, 0) −1 N/A Saddle
(1, 0) −1 N/A Saddle
(0, 1) −1 N/A Saddle

(1/3, 1/3) 1/3 −2/3 Local Max

() March 10, 2009 16 / 23



Here is the contour plot, and we see the saddles and local max:
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Example:

Find the local max, min and saddle points:

f (x , y) = x2ye−x2−y2

SOLUTION: First compute critical points:

fx(x , y) = 2xy(1− x2)e−x2−y2
fy (x , y) = x2(1− 2y2)e−x2−y2

and second derivatives:

fxx = (2y − 10x2y + 4x4y)e−x2−y2
fyy = (4x2y3 − 6x2y)e−x2−y2

and
fxy = 2x(1− x2 − 2y2 + 2x2y2)e−x2−y2
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Put everything in a table:

Point D fxx Result

(0, y) 0 0

Undetermined

(1, 1/
√

2) 8e−3 −
√

2 Local Max

(1,−1/
√

2) 8e−3
√

2 Local Min

(−1, 1/
√

2) 8e−3 −
√

2 Local Max

(−1,−1/
√

2) 8e−3
√

2 Local Min
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From the graph, we see that if y > 0, then points (0, y) are where local
minima occur, and if y > 0, then (0, y) are where local maxima occur.
These would be difficult to determine without the graph.
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If D = 0, some complicated behaviors can occur. In this example, we have

f (x , y) = x3 − 3xy2

Below is the surface, called a “Monkey Saddle”, and the corresponding
contour plot.

() March 10, 2009 22 / 23



() March 10, 2009 23 / 23


