Definition

A function $z=f(x, y)$ has a local minimum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \leq f(x, y)$ for all (x, y) in the disk.

Definition

A function $z=f(x, y)$ has a local minimum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \leq f(x, y)$ for all (x, y) in the disk.

Vocab: The point (a, b) is the minimizer, the value $f(a, b)$ is the minimum.

Definition

A function $z=f(x, y)$ has a local minimum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \leq f(x, y)$ for all (x, y) in the disk.

Vocab: The point (a, b) is the minimizer, the value $f(a, b)$ is the minimum.

Definition

A function $z=f(x, y)$ has a local maximum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \geq f(x, y)$ for all (x, y) in the disk.

Definition

A function $z=f(x, y)$ has a local minimum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \leq f(x, y)$ for all (x, y) in the disk.

Vocab: The point (a, b) is the minimizer, the value $f(a, b)$ is the minimum.

Definition

A function $z=f(x, y)$ has a local maximum at a point (a, b) if there is a disk about (a, b) so that $f(a, b) \geq f(x, y)$ for all (x, y) in the disk.

Definition

A function $z=f(x, y)$ has a global min (max) at a point (a, b) in a given region D if $f(a, b)$ is the smallest (largest) point in all of D (could be equality, too- There could be multiple max's and min's).

As in Calc I, we have the Extreme Value Theorem:

Theorem

If $z=f(x, y)$ is continuous on a closed and bounded region in the plane, D, then f attains a global max and min on D.

As in Calc I, we have the Extreme Value Theorem:

Theorem

If $z=f(x, y)$ is continuous on a closed and bounded region in the plane, D, then f attains a global max and min on D.
"Closed" - Includes all of its boundary.

As in Calc I, we have the Extreme Value Theorem:

Theorem

If $z=f(x, y)$ is continuous on a closed and bounded region in the plane, D, then f attains a global max and min on D.
"Closed" - Includes all of its boundary.
"Bounded" - Could be put in a circle with finite radius.

As in Calc I, we have the Extreme Value Theorem:

Theorem

If $z=f(x, y)$ is continuous on a closed and bounded region in the plane, D, then f attains a global max and min on D.
"Closed" - Includes all of its boundary.
"Bounded" - Could be put in a circle with finite radius.

Definition

The critical points of $z=f(x, y)$ are points where $\nabla f=0$ or either (or both) partial derivatives do not exist.

In the case that the EVT applies (global max/min on a closed and bounded domain), the candidates for where the $\mathrm{max} / \mathrm{min}$ can occur:

In the case that the EVT applies (global max/min on a closed and bounded domain), the candidates for where the max/min can occur:

- Critical points
- Boundary

Check them, and find the max/min on each (build a table).

Example: Find the global max and global min:

$$
f(x, y)=5+x^{2}+x-2 y^{2} \quad-1 \leq x \leq 1, \quad-1 \leq y \leq 1
$$

Example: Find the global max and global min:

$$
f(x, y)=5+x^{2}+x-2 y^{2} \quad-1 \leq x \leq 1, \quad-1 \leq y \leq 1
$$

SOLUTION: Find critical points:

$$
f_{x}(x, y)=2 x+1 \quad f_{y}(x, y)=-4 y \quad \Rightarrow \quad(-1 / 2,0)
$$

Value of f at the critical point: 4.75.

Check the boundary:

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $x=1,-1 \leq y \leq 1$:

Check the boundary:

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $x=1,-1 \leq y \leq 1$:

$$
f(1, y)=7-2 y^{2} \quad-1 \leq y \leq 1
$$

Check the boundary:

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $x=1,-1 \leq y \leq 1$:

Check the boundary:

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $x=1,-1 \leq y \leq 1$:

$$
f(1, y)=7-2 y^{2} \quad-1 \leq y \leq 1 \begin{array}{rl}
y & f(1, y) \\
& \left.\begin{array}{l}
y \\
-1
\end{array}\right)(1,-1)=5 \\
0 & f(1,0)=7 \\
1 & f(1,1)=5
\end{array}
$$

- $x=-1,-1 \leq y \leq 1$:

Check the boundary:

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $x=1,-1 \leq y \leq 1$:
- $x=-1,-1 \leq y \leq 1$:

$$
f(-1, y)=5-2 y^{2} \quad-1 \leq y \leq 1
$$

Check the boundary:

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $x=1,-1 \leq y \leq 1$:
- $x=-1,-1 \leq y \leq 1$:

$$
f(-1, y)=5-2 y^{2} \quad-1 \leq y \leq 1 \begin{array}{rl}
y & f(1, y) \\
\begin{array}{ll}
-1 & f(-1,-1)=3 \\
0 & f(-1,0)=5 \\
1 & f(-1,1)=3
\end{array}
\end{array}
$$

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $-1 \leq x \leq 1, y=-1$:
- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $-1 \leq x \leq 1, y=-1$.

$$
f(x,-1)=x^{2}+x+3 \quad-1 \leq x \leq 1
$$

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $-1 \leq x \leq 1, y=-1$.

$$
f(x,-1)=x^{2}+x+3 \quad-1 \leq x \leq 1 \begin{array}{rl}
x & f(x,-1) \\
& f(-1,-1)=3 \\
-1 / 2 & f(-1 / 2,-1)=2.75 \\
1 & f(1,-1)=5
\end{array}
$$

- $f(x, y)=5+x^{2}+x-2 y^{2}$ for $-1 \leq x \leq 1, y=-1$.

$$
f(x,-1)=x^{2}+x+3 \quad-1 \leq x \leq 1 \begin{array}{rl}
x & f(x,-1) \\
& f(-1,-1)=3 \\
-1 / 2 & f(-1 / 2,-1)=2.75 \\
1 & f(1,-1)=5
\end{array}
$$

- For $y=-1$, we have the same function and same interval.

Conclusion:

The global maximum is 7 , it occurs at $(1,0)$ on the boundary. The global minimum is 2.75 , it occurs twice on the boundary, at $(-1 / 2, \pm 1)$.

Local Extrema

To find local extrema, in Calc I we had the first and second derivative tests. It is not easy to find a substitute- A surface can be both CU and CD at a saddle point.

The Second Derivatives Test

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=
$$

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)
$$

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)
$$

Then, if

- If $D>0$ and $f_{x x}(a, b)>0$ (takes the place of $C U$), $f(a, b)$ is a local min.

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)
$$

Then, if

- If $D>0$ and $f_{x x}(a, b)>0$ (takes the place of $C U$), $f(a, b)$ is a local min.
- If $D>0$ and $f_{x x}(a, b)<0$ (takes the place of CD), $f(a, b)$ is a local max.

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)
$$

Then, if

- If $D>0$ and $f_{x x}(a, b)>0$ (takes the place of $C U$), $f(a, b)$ is a local min.
- If $D>0$ and $f_{x x}(a, b)<0$ (takes the place of CD), $f(a, b)$ is a local max.
- If $D<0$, we get neither

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)
$$

Then, if

- If $D>0$ and $f_{x x}(a, b)>0$ (takes the place of $C U$), $f(a, b)$ is a local min.
- If $D>0$ and $f_{x x}(a, b)<0$ (takes the place of CD), $f(a, b)$ is a local max.
- If $D<0$, we get neither (SADDLE POINT)

The Second Derivatives Test

Let

$$
D(a, b)=\left|\begin{array}{cc}
f_{x x}(a, b) & f_{x y}(a, b) \\
f_{y x}(a, b) & f_{y y}(a, b)
\end{array}\right|=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}^{2}(a, b)
$$

Then, if

- If $D>0$ and $f_{x x}(a, b)>0$ (takes the place of $C U$), $f(a, b)$ is a local min.
- If $D>0$ and $f_{x x}(a, b)<0$ (takes the place of CD), $f(a, b)$ is a local max.
- If $D<0$, we get neither (SADDLE POINT)
- If $D=0$, the test fails (we could have local max, local min or saddle).

Example: Classify the Critical Points

$$
f(x, y)=3 y^{3}+9 y^{2}-3 x y+\frac{1}{2} x^{2}+9 y-9 x
$$

Example: Classify the Critical Points

$$
f(x, y)=3 y^{3}+9 y^{2}-3 x y+\frac{1}{2} x^{2}+9 y-9 x
$$

Compute the partials:

Example: Classify the Critical Points

$$
f(x, y)=3 y^{3}+9 y^{2}-3 x y+\frac{1}{2} x^{2}+9 y-9 x
$$

Compute the partials:

$$
f_{x}=-3 y+x-9 \quad f_{y}=9 y^{2}+18 y-3 x+9
$$

Example: Classify the Critical Points

$$
f(x, y)=3 y^{3}+9 y^{2}-3 x y+\frac{1}{2} x^{2}+9 y-9 x
$$

Compute the partials:

$$
f_{x}=-3 y+x-9 \quad f_{y}=9 y^{2}+18 y-3 x+9
$$

And the second partials:

Example: Classify the Critical Points

$$
f(x, y)=3 y^{3}+9 y^{2}-3 x y+\frac{1}{2} x^{2}+9 y-9 x
$$

Compute the partials:

$$
f_{x}=-3 y+x-9 \quad f_{y}=9 y^{2}+18 y-3 x+9
$$

And the second partials:

$$
f_{x x}=1 \quad f_{x y}=-3 \quad f_{y y}=18 y+18
$$

Critical points

Critical points

$$
-3 y+x-9=0 \quad \text { and } \quad 9 y^{2}+18 y-3 x+9=0
$$

Critical points

$$
-3 y+x-9=0 \quad \text { and } \quad 9 y^{2}+18 y-3 x+9=0
$$

Substitute $x=3(y+3)$ into the second to eliminate x :

Critical points

$$
-3 y+x-9=0 \quad \text { and } \quad 9 y^{2}+18 y-3 x+9=0
$$

Substitute $x=3(y+3)$ into the second to eliminate x :

$$
9 y^{2}+18 y-9(y+3)+9=9 y^{2}+9 y-18=0 \quad \Rightarrow \quad y^{2}+y-2=0
$$

Critical points

$$
-3 y+x-9=0 \quad \text { and } \quad 9 y^{2}+18 y-3 x+9=0
$$

Substitute $x=3(y+3)$ into the second to eliminate x :

$$
9 y^{2}+18 y-9(y+3)+9=9 y^{2}+9 y-18=0 \quad \Rightarrow \quad y^{2}+y-2=0
$$

Therefore, $y=-2$ and $y=1$. Backsub to get the ordered pairs:

$$
(3,-2) \quad(12,1)
$$

Do the Second Derivatives test on each CP; simplify first:

$$
D(x, y)=(1)(18 y+18)-(-3)^{2}=18 y+9
$$

Do the Second Derivatives test on each CP; simplify first:

$$
D(x, y)=(1)(18 y+18)-(-3)^{2}=18 y+9
$$

So, at $(3,-2), D(3,-2)=-36+9<0$ so that is a SADDLE POINT.

Do the Second Derivatives test on each CP; simplify first:

$$
D(x, y)=(1)(18 y+18)-(-3)^{2}=18 y+9
$$

So, at $(3,-2), D(3,-2)=-36+9<0$ so that is a SADDLE POINT. At $(12,1)$, we have $D(12,1)=18+9>0$, and $f_{x x}>0$, so we have a

Do the Second Derivatives test on each CP; simplify first:

$$
D(x, y)=(1)(18 y+18)-(-3)^{2}=18 y+9
$$

So, at $(3,-2), D(3,-2)=-36+9<0$ so that is a SADDLE POINT. At $(12,1)$, we have $D(12,1)=18+9>0$, and $f_{x x}>0$, so we have aLOCAL MIN.

Example

Find the local maximum, minimum and saddle points. Verify your answer by locating these points on the plot of level curves.

$$
g(x, y)=x y(1-x-y)
$$

Example

Find the local maximum, minimum and saddle points. Verify your answer by locating these points on the plot of level curves.

$$
g(x, y)=x y(1-x-y)
$$

SOLUTION: Find the critical points, then classify according to the Second Derivatives Test. First, we'll compute the partial derivatives (and the seconds):

Example

Find the local maximum, minimum and saddle points. Verify your answer by locating these points on the plot of level curves.

$$
g(x, y)=x y(1-x-y)
$$

SOLUTION: Find the critical points, then classify according to the Second Derivatives Test. First, we'll compute the partial derivatives (and the seconds):

$$
\begin{gathered}
g_{x}=y(1-2 x-y) \quad g_{x x}=-2 y \quad g_{x y}=1-2 x-2 y \\
g_{y}=x(1-x-2 y) \quad g_{y y}=-2 x
\end{gathered}
$$

Solving for the critical points,

$$
y(1-2 x-y)=0 \quad \Rightarrow \quad y=0 \quad \text { or } \quad y=1-2 x
$$

Solving for the critical points,

$$
y(1-2 x-y)=0 \quad \Rightarrow \quad y=0 \quad \text { or } \quad y=1-2 x
$$

In the case that $y=0$, we have:

$$
x(1-x)=0 \quad \Rightarrow \quad x=0 \text { or } x=1
$$

Solving for the critical points,

$$
y(1-2 x-y)=0 \quad \Rightarrow \quad y=0 \quad \text { or } \quad y=1-2 x
$$

In the case that $y=0$, we have:

$$
x(1-x)=0 \quad \Rightarrow \quad x=0 \text { or } x=1
$$

So far, we have two critical points, $(0,0)$ and $(1,0)$. If $y=1-2 x$, then:

Solving for the critical points,

$$
y(1-2 x-y)=0 \quad \Rightarrow \quad y=0 \quad \text { or } \quad y=1-2 x
$$

In the case that $y=0$, we have:

$$
x(1-x)=0 \quad \Rightarrow \quad x=0 \text { or } x=1
$$

So far, we have two critical points, $(0,0)$ and $(1,0)$. If $y=1-2 x$, then:

$$
x(1-x-2(1-2 x))=0 \quad \Rightarrow \quad x=0 \text { or } x=1 / 3
$$

Solving for the critical points,

$$
y(1-2 x-y)=0 \quad \Rightarrow \quad y=0 \quad \text { or } \quad y=1-2 x
$$

In the case that $y=0$, we have:

$$
x(1-x)=0 \quad \Rightarrow \quad x=0 \text { or } x=1
$$

So far, we have two critical points, $(0,0)$ and $(1,0)$. If $y=1-2 x$, then:

$$
x(1-x-2(1-2 x))=0 \quad \Rightarrow \quad x=0 \text { or } x=1 / 3
$$

Now we have two more fixed points: $(0,1)$ or $(1 / 3,1 / 3)$.

In each case apply the Second Derivatives Test:

$$
D=g_{x x} g_{y y}-g_{x y}^{2}=4 x y-(1-2 x-2 y)^{2}
$$

In each case apply the Second Derivatives Test:

$$
D=g_{x x} g_{y y}-g_{x y}^{2}=4 x y-(1-2 x-2 y)^{2}
$$

Point	D	$g_{x x}$	Result
$(0,0)$	-1	N/A	

In each case apply the Second Derivatives Test:

$$
D=g_{x x} g_{y y}-g_{x y}^{2}=4 x y-(1-2 x-2 y)^{2}
$$

Point	D	$g_{x x}$	Result
$(0,0)$	-1	N/A	Saddle
$(1,0)$	-1	N/A	

In each case apply the Second Derivatives Test:

$$
D=g_{x x} g_{y y}-g_{x y}^{2}=4 x y-(1-2 x-2 y)^{2}
$$

Point	D	$g_{x x}$	Result
$(0,0)$	-1	N/A	Saddle
$(1,0)$	-1	N/A	Saddle
$(0,1)$	-1	N/A	

In each case apply the Second Derivatives Test:

$$
D=g_{x x} g_{y y}-g_{x y}^{2}=4 x y-(1-2 x-2 y)^{2}
$$

Point	D	$g_{x x}$	Result
$(0,0)$	-1	N/A	Saddle
$(1,0)$	-1	N/A	Saddle
$(0,1)$	-1	N/A	Saddle
$(1 / 3,1 / 3)$	$1 / 3$	$-2 / 3$	

In each case apply the Second Derivatives Test:

$$
D=g_{x x} g_{y y}-g_{x y}^{2}=4 x y-(1-2 x-2 y)^{2}
$$

Point	D	$g_{x x}$	Result
$(0,0)$	-1	N/A	Saddle
$(1,0)$	-1	N/A	Saddle
$(0,1)$	-1	N/A	Saddle
$(1 / 3,1 / 3)$	$1 / 3$	$-2 / 3$	Local Max

Here is the contour plot, and we see the saddles and local max:

Example:

Find the local max, min and saddle points:

$$
f(x, y)=x^{2} y \mathrm{e}^{-x^{2}-y^{2}}
$$

SOLUTION: First compute critical points:

Example:

Find the local max, min and saddle points:

$$
f(x, y)=x^{2} y \mathrm{e}^{-x^{2}-y^{2}}
$$

SOLUTION: First compute critical points:

$$
f_{x}(x, y)=2 x y\left(1-x^{2}\right) \mathrm{e}^{-x^{2}-y^{2}} \quad f_{y}(x, y)=x^{2}\left(1-2 y^{2}\right) \mathrm{e}^{-x^{2}-y^{2}}
$$

and second derivatives:

Example:

Find the local max, min and saddle points:

$$
f(x, y)=x^{2} y \mathrm{e}^{-x^{2}-y^{2}}
$$

SOLUTION: First compute critical points:

$$
f_{x}(x, y)=2 x y\left(1-x^{2}\right) \mathrm{e}^{-x^{2}-y^{2}} \quad f_{y}(x, y)=x^{2}\left(1-2 y^{2}\right) \mathrm{e}^{-x^{2}-y^{2}}
$$

and second derivatives:

$$
f_{x x}=\left(2 y-10 x^{2} y+4 x^{4} y\right) \mathrm{e}^{-x^{2}-y^{2}} \quad f_{y y}=\left(4 x^{2} y^{3}-6 x^{2} y\right) \mathrm{e}^{-x^{2}-y^{2}}
$$

and

$$
f_{x y}=2 x\left(1-x^{2}-2 y^{2}+2 x^{2} y^{2}\right) \mathrm{e}^{-x^{2}-y^{2}}
$$

Put everything in a table:

Point	D	$f_{x x}$	Result
$(0, y)$	0	0	

Put everything in a table:

Point	D	$f_{x x}$	Result
$(0, y)$	0	0	Undetermined
$(1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	

Put everything in a table:

Point	D	$f_{x x}$	Result
$(0, y)$	0	0	Undetermined
$(1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	Local Max
$(1,-1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$\sqrt{2}$	

Put everything in a table:

Point	D	$f_{x x}$	Result
$(0, y)$	0	0	Undetermined
$(1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	Local Max
$(1,-1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$\sqrt{2}$	Local Min
$(-1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	

Put everything in a table:

Point	D	$f_{x x}$	Result
$(0, y)$	0	0	Undetermined
$(1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	Local Max
$(1,-1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$\sqrt{2}$	Local Min
$(-1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	Local Max
$(-1,-1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$\sqrt{2}$	

Put everything in a table:

Point	D	$f_{x x}$	Result
$(0, y)$	0	0	Undetermined
$(1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	Local Max
$(1,-1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$\sqrt{2}$	Local Min
$(-1,1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$-\sqrt{2}$	Local Max
$(-1,-1 / \sqrt{2})$	$8 \mathrm{e}^{-3}$	$\sqrt{2}$	Local Min

From the graph, we see that if $y>0$, then points $(0, y)$ are where local minima occur, and if $y>0$, then $(0, y)$ are where local maxima occur. These would be difficult to determine without the graph.

If $D=0$, some complicated behaviors can occur. In this example, we have

$$
f(x, y)=x^{3}-3 x y^{2}
$$

Below is the surface, called a "Monkey Saddle", and the corresponding contour plot.

