
Exam 2 Sample Solutions

Be sure to look over your old quizzes and homework as well. For limits, we will provide a graph and
contours. No calculators will be allowed for this exam.

1. True or False, and explain:

(a) There exists a function f with continuous second partial derivatives such that

fx(x, y) = x+ y2 fy = x− y2

SOLUTION: False. If the function has continuous second partial derivatives, then Clairaut’s The-
orem would apply (and fxy = fyx). However, in this case:

fxy = 2y fyx = −2y

(b) The function f below is continuous at the origin.

f(x, y) =
{ 2xy

x2+2y2 , if (x, y) 6= (0, 0)
0 if (x, y) = (0, 0)

SOLUTION: Check the limit- First, how about y = x versus y = −x?

lim
(x,x)→(0,0)

2x2

3x2
=

2
3

lim
(x,−x)→(0,0)

−2x2

3x2
=
−2
3

Yep, that did it- The limit does not exist at the origin, therefore the function is not continuous at
the origin (it is continuous at all other points in the domain).

(c) If ~r(t) is a differentiable vector function, then

d

dt
|~r(t)| = |~r ′(t)|

SOLUTION: False.

d

dt
|r(t)| = 1

2
(r(t) · r(t))−1/2 (r′(t) · r(t) + r(t) · r′(t)) =

r′(t) · r(t)
|r(t)|

Extra: If you’re not sure about it, try to verify the formula with r(t) = 〈3t2, 6t− 5〉.
(d) If z = 1− x2 − y2, then the linearization of z at (1, 1) is

L(x, y) = −2x(x− 1)− 2y(y − 1)

SOLUTION: False for two reasons. We have forgotten to evaluate the partial derivatives of f at
the base point (1, 1) (and so the resulting formula is not linear). We have also forgotten to evaluate
the function itself at (1, 1). The linearization should be:

L(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) = −1− 2(x− 1)− 2(y − 1)

(e) We can always use the formula: ∇f(a, b) · ~u to compute the directional derivative at (a, b) in the
direction of ~u.
SOLUTION: False. This formula only works if f is differentiable at (a, b) (See Exercise 4 below).

(f) Different parameterizations of the same curve result in identical tangent vectors at a given point
on the curve.
SOLUTION: False. The magnitude of r(t) is the velocity. For example, r(3t) will have a magnitude
that is three times that of the original- If you want an actual example, consider

r(t) = 〈cos(t), sin(t)〉

At the point on the unit circle (1/
√

2, 1/
√

2), the magnitude of r′(π/4) = 1. Replace t by 3t (and
evaluate at t = π/12 to have the same point on the curve), and the speed is 3 instead of 1.

Why did we bring this up? If we re-parameterize with respect to arc length, the velocity is always
1 unit (so at s = 1, you’ve traveled one unit of length, etc).
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(g) If ~u(t) and ~v(t) are differentiable vector functions, then

d

dt
[~u(t)× ~v(t)] = ~u ′(t)× ~v ′(t)

SOLUTION: False. It looks like the product rule:

d

dt
[~u(t)× ~v(t)] = ~u ′(t)× ~v(t) + ~u(t)× ~v ′(t)

(h) If fx(a, b) and fy(a, b) both exist, then f is differentiable at (a, b).
SOLUTION: False. Our theorem says that in order to conclude that f is differentiable at (a, b),
the partial derivatives must be continuous at (a, b). Just having the partial derivatives exist at a
point is a weak condition- It is not enough to even have continuity.

(i) At a given point on a curve (x(t0), y(t0), z0(t)), the osculating plane through that point is the plane
through (x(t0), y(t0), z(t0)) with normal vector is ~B(t0).
SOLUTION: True (by definition).

2. Show that, if |~r(t)| is a constant, then ~r ′(t) is orthogonal to ~r(t). (HINT: Differentiate |~r(t)|2 = k)

SOLUTION: Using the hint,

0 =
d

dt
k =

d

dt

(
|~r(t)|2

)
=

d

dt
(~r(t) · ~r(t)) = ~r ′(t) · ~r(t) + ~r(t) · ~r ′(t) = 2~r ′(t) · ~r(t)

Therefore, the dot product is zero (and so ~r ′(t) and ~r(t) are orthogonal).

3. Reparameterize the curve with respect to arc length measuring from t = 0 in the direction of increasing
t:

r = 2ti + (1− 3t)j + (5 + 4t)k

SOLUTION: Find s as a function of t, invert it then substitute it back into the expression so that r is
a function of s. In this case,

s =
∫ t

0

|r′(u)| du =
√

29 t

Therefore, t = s/
√

29, and

r(s) =
〈

2√
29
s, 1− 3√

29
s, 5 +

4√
29
s

〉
4. Is it possible for the directional derivative to exist for every unit vector ~u at some point (a, b), but f is

still not differentiable there?

Consider the function f(x, y) = 3
√
x2y. Show that the directional derivative exists at the origin (by

letting ~u = 〈cos(θ), sin(θ)〉 and using the definition), BUT, f is not differentiable at the origin (because
if it were, we could use ∇f · ~u to compute D~uf).

SOLUTION: Compute the directional derivative at the origin by using the definition:

Duf(0, 0) = lim
h→0

f(0 + h cos(θ), 0 + h sin(θ))− f(0, 0)
h

= lim
h→0

h 3
√

cos2(θ) sin(θ)
h

= 3
√

cos2(θ) sin(θ)

Notice that by using the definition, θ = 0 corresponds to the rate of change parallel to the x−axis, and
θ = π/2 is the rate of change parallel to the y−axis:

fx(0, 0) = 0 fy(0, 0) = 0

so that, if f were differentiable at the origin, we could use

Duf = ∇f · ~u = 0

for every vector ~u, but that is not the case (our directional derivative is not always zero).
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5. If f(x, y) = sin(2x+ 3y), then find the linearization of f at (−3, 2).

SOLUTION: We have f(−3, 2) = sin(0) = 0 and

fx(x, y) = 2 cos(2x+ 3y) ⇒ fx(−3, 2) = 2

fy(x, y) = 3 cos(2x+ 3y) ⇒ fy(−3, 2) = 3

Therefore,
L(x, y) = 0 + 2(x+ 3) + 3(y − 2) = 2(x+ 3) + 3(y − 2)

6. The radius of a right circular cone is increasing at a rate of 3.5 inches per second while its height is
decreasing at a rate of 4.3 inches per second. At what rate is the volume changing when the radius is
160 inches and the height is 200 inches? (V = 1

3πr
2h)

SOLUTION:
dV

dt
=

2
3
πrh

dr

dt
+

1
3
πr2

dh

dt

Use r = 160, h = 200, dr/dt = 3.5 and dh/dt = −4.3, dV/dt ≈ 37973.3π

7. Find the differential of the function: v = y cos(xy)

SOLUTION:
dv = vx dx+ vy dy = (−y2 sin(xy) dx+ (cos(xy)− xy sin(xy)) dy

8. Find the maximum rate of change of f(x, y) = x2y +
√
y at the point (2, 1), and the direction in which

it occurs.

SOLUTION: The maximum rate of change occurs if we move in the direction of the gradient. We see
this by recalling that:

Duf = ∇f · ~u = |∇f | cos(θ)

so we find the gradient at the point (2, 1)

∇f = 〈4, 9/2〉

So if we move in that direction, the we get the max rate of change, which is

|∇f | =
√

42 +
81
4

=
√

145
2
≈ 6.02

9. Find an expression for
d

dt
[u(t) · (v(t)×w(t)]

SOLUTION:
d

dt
[u(t) · (v(t)×w(t)] = u′ · (v ×w) + u · (v ×w)′

Taking this derivative, we see that

d

dt
[u(t) · (v(t)×w(t)] = u′ · (v ×w) + u · (v′ ×w + v ×w′)

10. Use Lagrange Multipliers to find the maximum and minimum of f subject to the given constraints:

f(x, y) = x2y x2 + y2 = 1

SOLUTION:

At optimality, the gradients are parallel, so the system of equations we are solving is given below:

2xy = 2λx
x2 = 2λy

x2 + y2 = 1
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If x 6= 0 in the first equation, then λ = y. Going to the second equation, that implies that x2 = 2y2.
Now to the third equation, we can solve for y, and therefore also x:

3y2 = 1 ⇒ y = ±
√

1
3
⇒ x = ±

√
2
3

Are there any other solutions? If x = 0 in the first equation, then y = ±1 from the third equation- in
that case, f(0,±1) = 0.

Substitute into f and we find the max and min:

f

(
±
√

2
3
,

√
1
3

)
=

2
3
√

3
f

(
±
√

2
3
,−
√

1
3

)
=
−2
3
√

3

11. The curves below intersect at the origin. Find the angle of intersection to the nearest degree:

~r1(t) = 〈t, t2, t9〉 ~r2(t) = 〈sin(t), sin(5t), t〉

SOLUTION:

The angle of intersection is the angle between the tangent vectors at the origin. First differentiate, then
evaluate at t = 0:

~r1
′(t) = 〈1, 2t, 9t8〉 ~r2

′(t) = 〈cos(t), 5 cos(5t), 1〉 ⇒ 〈1, 0, 0〉, 〈1, 5, 1〉

To find the angle, we use the relationship:

u · v = |u| |v| cos(θ)

In our case:
cos(θ) =

1√
12 + 52 + 12

⇒ θ = cos−1(1/
√

27) ≈ 79◦

12. Find three positive numbers whose sum is 100 and whose product is a maximum.

SOLUTION: Let x, y, z be the three numbers. Then we want to find the maximum of P (x, y, z) = xyz
subject to the constraint that x+ y + z = 100 and they are all positive.

Alternative 1: Let P (x, y) = xy(100− x− y). The critical points are

y(100− x− y)− xy = 0
x(100− x− y)− xy = 0

From the first equation, y = 100−2x (we can throw out y = 0). Substitute this into the second equation
to find that x = 100/3. Therefore, y = 100/3 and z = 100/3. These are the three numbers we wanted.

Alternative 2: Using Lagrange Multipliers,

yz = λ
xz = λ
xy = λ

x+ y + z = 100

From the first three equations, if we do not allow zero (then P = 0), we have x = y = z. Substitute into
the fourth equation to see that x = y = z = 100/3.

13. Find the equation of the tangent plane and normal line to the given surface at the specified point:

x2 + 2y2 − 3z2 = 3 (2,−1, 1)

SOLUTION: This is an implicitly defined surface of the form F (x, y, z) = k, therefore, we know that
∇F is orthogonal to the tangent planes on the surface. Compute ∇F at (2,−1, 1), and construct the
plane and line:

Fx = 2x Fy = 4y Fz = −6z ⇒ ∇F (2,−1, 1) = 〈4,−4,−6〉
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Thus, the tangent plane is:
4(x− 2)− 4(y + 1)− 6(z − 1) = 0

The normal line goes in the direction of the gradient, starting at the given point. In parametric form,

x(t) = 2 + 4t y(t) = −1− 4t z(t) = 1− 6t

14. If z = x2 − y2, x = w + 4t, y = w2 − 5t+ 4, w = r2 − 5u, t = 3r + 5u, find ∂z/∂r.

SOLUTION: Use a chart to keep track of the variables; see the solution attached.

15. If x2 + y2 + z2 = 3xyz and we treat z as an implicit function of x, y, then find ∂z/∂x and ∂z/∂y.

SOLUTION: Let us define F (x, y, z) = x2 + y2 + z2 − 3xyz in keeping with the notation from the text.
Then we compute:

F (x, y, z) = 0⇒ Fx
∂x

∂x
+ Fy

∂y

∂x
+ Fz

∂z

∂x
= 0⇒ ∂z

∂x
=
−Fx

Fz
=
−(2x− 3yz)

2z − 3xy

Similarly, we can show that
∂z

∂y
=
−Fy

Fz
=
−(2y − 3xz)

2z − 3xy

16. If a(t) = −10k and v(0) = i + j− k, r(0) = 2i + 3j, find the velocity and position vector functions.

SOLUTION:
v(t) =

∫
a(t) dt = 〈0, 0,−10t〉+ v0 = 〈1, 1,−10t− 1〉

And antidifferentiate once more:

r(t) =
∫

v(t) dt = 〈t, t,−5t2 − t〉+ r0 = 〈t+ 2, t+ 3,−5t2 − t〉

17. Find the equation of the normal line through the level curve 4 =
√

5x− 4y at (4, 1) using a gradient.

SOLUTION: The gradient of g is orthogonal to its level curve at
√

5x− 4y = 4. Find the gradient of g
at (4, 1):

∇g =
1
8
〈5,−4〉

For the line, we simply need to move in the direction of the gradient, so we can simplify the direction to
〈5,−4〉 (not necessary, but easier for the algebra).

Therefore, the line (in parametric and symmetric form) is:

x(t) = 4 + 5t y(t) = 1− 4t or
x− 4

5
=
y − 1
−4

Notice that the slope is −4/5. If we wanted to check our answer, we could find the slope of the tangent
line:

5x− 4y = 16 ⇒ 5− 4
dy

dx
= 0 ⇒ dy

dx
=

5
4

18. Find all points at which the direction of fastest change in the function f(x, y) = x2 + y2 − 2x − 4y is
~i+~j.

SOLUTION: The direction of the fastest increase is in the direction of the gradient. Therefore, another
way to phrase this question is: When is the gradient pointing in the direction of 〈1, 1〉 (very reminiscent
of the Lagrange Multiplier):

∇f = k〈1, 1〉 ⇒ 〈2x− 2, 2y − 4〉 = 〈k, k〉

So k = 2x− 2 and k = 2y − 4, therefore, the points are on the line 2x− 2 = 2y − 4, or y = x+ 1. Our
conclusion: There are an infinite number of possibilities- All of the form (a, a + 1), which result in the
gradient:

(2a− 2)〈1, 1, 〉 a > 1
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19. Find the volume of the largest rectangular box in the first octant with three faces in the coordinate
planes and one vertex in the plane x+ 2y + 3z = 6.

SOLUTION: The volume is V = xyz subject to the constraint that x+ 2y + 3z = 6.

Alternative 1: Take V = 1
3xy(6− x− 2y), then find the CPs. The only CP with no zeros is x = 2, y =

1, z = 2/3.

Alternative 2: Use Lagrange Multipliers to get the same answer (probably much quicker).

20. Find and classify the critical points:

f(x, y) = 4 + x3 + y3 − 3xy

SOLUTION: The partial derivatives are:

fx = 3x2 − 3y fy = 3y2 − 3x fxx = 6x fyy = 6y fxy = −3

The critical points are where x2 = y and y2 = x, so x, y are both zero or positive:

x4 = x ⇒ x4 − x = 0 ⇒ x(x3 − 1) = 0

so x = 0, y = 0 or x = 1, y = 1. Put these points into the Second Derivatives Test:

fxx(0, 0)fyy(0, 0)− f2
xy(0, 0) = −9 < 0 ⇒ The origin is a SADDLE

fxx(1, 1)fyy(1, 1)− f2
xy(1, 1) = 36− 9 > 0 fxx(1, 1) > 0⇒ Local MIN

21. Let f(x, y) = x− y2. Find the gradient of f at (3,−1). We said that this gradient was perpendicular to
a level curve of f - Which one? Draw a sketch showing the level curve and the gradient vector, then find
the equation of the tangent line to the level curve and the equation of the normal line.

SOLUTION: The level curve is the one that contains the given point (in this case, (3,−1)): Substitute
to get 3 − 1 = 2, so the curve is x − y2 = 2 or x − 2 = y2, which is a sideways parabola shifted to the
right two units. The gradient at (3,−1) is 〈1, 2〉. The tangent line has slope −1/2:

Tangent Line: 1(x+ 3) + 2(y + 1) = 0 or y + 1 = −1
2

(x− 3)

Normal Line:x = 3 + t, y = −1 + 2t or
y + 1

2
= (x− 3) or y + 1 = 2(x− 3)

22. Find the equation of the tangent plane to the surface implicitly defined below at the point (1, 1, 1):

x3 + y3 + z3 = 9− 6xyz

SOLUTION: First write this as F (x, y, z) = 0, then the gradient of F is the normal vector for the plane
(evaluated at (1, 1, 1)):

F (x, y, z) = x3 + y3 + z3 + 6xyz − 9 = 0

Then, at (1, 1, 1)

Fx = 3x2 + 6yz Fy = 3y2 + 6xz Fz = 3z2 + 6xy ⇒ ∇F = 〈9, 9, 9〉

Therefore, the tangent plane is:

9(x− 1) + 9(y − 1) + 9(z − 1) = 0

Alternate and Note: We could have used the following formulas to compute the tangent plane:

zx =
−Fx

Fz
= −1 zy =

−Fy

Fz
= −1

to write the tangent plane as:
z − 1 = −(x− 1)− (y − 1)
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23. Find parametric equations of the tangent line at the point (−2, 2, 4) to the curve of intersection of the
surface z = 2x2 − y2 and z = 4. (Hint: In which direction should the tangent line go?)

The curve is 2x2−y2 = 4, which is an ellipse (at height 4 in 3-d). The gradient is 〈4x,−2y〉 so at (−2, 2),
the gradient is < −8,−4 >, so the tangent line (in the xy plane) is:

−8(x+ 2)− 4(y − 2) = 0 or y = −2(x+ 2) + 2

The tangent line can be expressed as:

〈t,−2(t+ 2) + 2, 4〉

(But there are multiple ways of expressing it).

24. Find and classify the critical points:

f(x, y) = x3 − 3x+ y4 − 2y2

SOLUTION: We use the second derivatives test to classify the critical points as local min, local max or
saddle.

Solving for the CPs, we get:

fx(x, y) = 3x2 − 3 = 0 fy(x, y) = 4y3 − 4y = 0

from which we get x = ±1, y = ±1 and x = ±1, y = 0 Continuing with second derivatives,

D(x, y) =
∣∣∣∣ fxx fxy
fyx fyy

]
=
∣∣∣∣ 6x 0

0 12y2 − 4

]
= 24x(3y2 − 1)

We’ll arrange the results in a list:

Point D and Classification
(1, 1) 48 : Local Min

(1,−1) 48 : Local Min
(1, 0) −24 : Saddle

(−1, 1) −48 : Saddle
(−1,−1) −48 : Saddle
(−1, 0) 24 : Local Max
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