Exam 2 Sample Solutions

Be sure to look over your old quizzes and homework as well. For limits, we will provide a graph and
contours. No calculators will be allowed for this exam.

1. True or False, and explain:

(a)

There exists a function f with continuous second partial derivatives such that

folm,y) =z+y* fy=a—y

SOLUTION: False. If the function has continuous second partial derivatives, then Clairaut’s The-
orem would apply (and f;, = fy»). However, in this case:

Joy =2y Jyz = =2y
The function f below is continuous at the origin.
g i (2,y) #(0,0)
— x24+2y2" 1 Y ’
Jey) { 0 if (z,y) =
SOLUTION: Check the limit- First, how about y = x versus y = —x7

. 22 2 . —2z2 =2
lim _— = = lim ——
(z,2)—(0,0) 3z2 3 (z,—2)—(0,0) 372 3

Yep, that did it- The limit does not exist at the origin, therefore the function is not continuous at
the origin (it is continuous at all other points in the domain).

If 7(¢) is a differentiable vector function, then

d, "
%\r(tﬂ = |7'(t)]
SOLUTION: False.
d 1 —1/2 (0 / _ ') -x(t)
GElFO1 = 50 x(O)72 (@0 x(0) +x(0) 1 (0) = —

Extra: If you're not sure about it, try to verify the formula with r(t) = (3t2,6t — 5).

If z=1— 22 — 2, then the linearization of z at (1,1) is
L(z,y) = —2x(z - 1) - 2y(y — 1)

SOLUTION: False for two reasons. We have forgotten to evaluate the partial derivatives of f at
the base point (1, 1) (and so the resulting formula is not linear). We have also forgotten to evaluate
the function itself at (1,1). The linearization should be:

L((E,y) = f(aab) + f:c(aab)(x - a‘) + fy(avb)(y - b) =-1- 2(1' - 1) - 2(y - 1)

We can always use the formula: Vf(a,b) - @ to compute the directional derivative at (a,b) in the
direction of .

SOLUTION: False. This formula only works if f is differentiable at (a,b) (See Exercise 4 below).
Different parameterizations of the same curve result in identical tangent vectors at a given point
on the curve.

SOLUTION: False. The magnitude of r(t) is the velocity. For example, r(3t) will have a magnitude
that is three times that of the original- If you want an actual example, consider

r(t) = (cos(t),sin(t))

At the point on the unit circle (1/v/2,1/y/2), the magnitude of r’(7/4) = 1. Replace t by 3t (and
evaluate at t = 7/12 to have the same point on the curve), and the speed is 3 instead of 1.

Why did we bring this up? If we re-parameterize with respect to arc length, the velocity is always
1 unit (so at s = 1, you've traveled one unit of length, etc).



(g) If @(t) and 0(t) are differentiable vector functions, then

d = - —/ =/
= [i(t) x T(0) = @' (1) x 7' (2)

SOLUTION: False. It looks like the product rule:

% [@(t) x 9(t)] = @' (t) x U(t) + d(t) x v'(¢)

(h) If fi(a,b) and fy(a,b) both exist, then f is differentiable at (a,b).
SOLUTION: False. Our theorem says that in order to conclude that f is differentiable at (a,b),
the partial derivatives must be continuous at (a,b). Just having the partial derivatives exist at a
point is a weak condition- It is not enough to even have continuity.

(i) At a given point on a curve (z(to), y(to), z0(t)), the osculating plane through that point is the plane
through (z(to),y(to), 2(to)) with normal vector is B(tp).
SOLUTION: True (by definition).

2. Show that, if |(t)| is a constant, then 7#'(t) is orthogonal to #(t). (HINT: Differentiate |7(t)|> = k)
SOLUTION: Using the hint,

d d = 2\ __ d = = — — —/ o=/ —
0= gk = (FOP) = 2 (7(0) - 7(0)) = 7' (1) - 7(0) + 7(0) - () = 2 (1) - ()

Therefore, the dot product is zero (and so 7'(t) and 7(t) are orthogonal).

3. Reparameterize the curve with respect to arc length measuring from ¢ = 0 in the direction of increasing
t:
r=2ti+ (1 -3t)j+ (5 +4t)k

SOLUTION: Find s as a function of ¢, invert it then substitute it back into the expression so that r is
a function of s. In this case,

t
s=/ It/ ()| du = v/20 ¢
0
Therefore, t = 5/1/29, and

(s) < 2 ! 3 54 4 >
r(s) =( —=s,1— —s, —s
V29 V29 V29
4. Ts it possible for the directional derivative to exist for every unit vector @ at some point (a,b), but f is
still not differentiable there?

Consider the function f(z,y) = {/z2y. Show that the directional derivative exists at the origin (by
letting @ = (cos(6),sin(f)) and using the definition), BUT, f is not differentiable at the origin (because
if it were, we could use Vf - 4 to compute Dgzf).

SOLUTION: Compute the directional derivative at the origin by using the definition:

J(0 4 hcos(9),0+ hsin(f)) — f(0,0) . h{/cos?(0) sin(9)
h = s h

D, f(0,0) = }lLiE%) = y/cos?(0) sin(6)

Notice that by using the definition, # = 0 corresponds to the rate of change parallel to the x—axis, and
0 = /2 is the rate of change parallel to the y—axis:

f2(0,0)=0  £,(0,0)=0
so that, if f were differentiable at the origin, we could use
D,f=Vf-i=0

for every vector @, but that is not the case (our directional derivative is not always zero).



10.

If f(z,y) = sin(2z + 3y), then find the linearization of f at (—3,2).
SOLUTION: We have f(—3,2) =sin(0) = 0 and

fo(m,y) =2c08(2z +3y) = fu(-3,2)=2

fylz,y) =3cos(2z +3y) = f,(-3,2)=3

Therefore,
L(z,y) =04+2(x+3)+3(y—2) =2(x+3)+ 3(y — 2)

The radius of a right circular cone is increasing at a rate of 3.5 inches per second while its height is
decreasing at a rate of 4.3 inches per second. At what rate is the volume changing when the radius is

160 inches and the height is 200 inches? (V = fmr?h)
SOLUTION:
w2 dr 1 dh
a ~ 3" a T3 @

Use r = 160, h = 200, dr/dt = 3.5 and dh/dt = —4.3, dV/dt ~ 37973.3x

Find the differential of the function: v = y cos(xy)
SOLUTION:
dv = v, dr + v, dy = (—y* sin(xy) dz + (cos(zvy) — zysin(zy)) dy
Find the maximum rate of change of f(z,y) = 2?y + \/y at the point (2,1), and the direction in which
it occurs.

SOLUTION: The maximum rate of change occurs if we move in the direction of the gradient. We see
this by recalling that:
Duf =Vf-i=]|Vf|cos(d)

so we find the gradient at the point (2, 1)
Vf=1(4,9/2)

So if we move in that direction, the we get the max rate of change, which is

1 V14
V| = 42+SZ:T5%6.02

Find an expression for

SOLUTION: J
= ut) - (vit) xwt))=u' - (vxw)+u-(vxw)

Taking this derivative, we see that

d / / /
%[u(t)-(v(t)xw(t)]:u (vxw)+u (vVixw+vxw)

Use Lagrange Multipliers to find the maximum and minimum of f subject to the given constraints:
flay) =2y 2 +y*=1

SOLUTION:

At optimality, the gradients are parallel, so the system of equations we are solving is given below:

2zy =2\x
2 =2y
x2 + y2 =1



11.

12.

13.

If 2 # 0 in the first equation, then A = y. Going to the second equation, that implies that z? = 2y2.

Now to the third equation, we can solve for y, and therefore also z:

9 1 2
y'=1 = y::|:§ = x:ig

Are there any other solutions? If x = 0 in the first equation, then y = +1 from the third equation- in
that case, f(0,£1) =0.

Substitute into f and we find the max and min:

(CHBE- QSO

The curves below intersect at the origin. Find the angle of intersection to the nearest degree:
Fi(t) = (t,t3,t%)  7a(t) = (sin(t),sin(5¢),t)

SOLUTION:

The angle of intersection is the angle between the tangent vectors at the origin. First differentiate, then
evaluate at t = 0:

7 (t) = (1,2t,9t%) 7' (t) = (cos(t),5cos(5t),1) = (1,0,0),(1,5,1)
To find the angle, we use the relationship:
u-v = |ul|v|cos(9)

In our case: 1
/12 + 52 + 12
Find three positive numbers whose sum is 100 and whose product is a maximum.

SOLUTION: Let z,y, z be the three numbers. Then we want to find the maximum of P(z,y,z) = zyz
subject to the constraint that = + y + z = 100 and they are all positive.

cos(f) = 0 = cos™'(1/V27) ~ 79°

Alternative 1: Let P(z,y) = zy(100 —  — y). The critical points are

y(100 —x —y) —ay =0
(100 -z —y) —ay =0

From the first equation, y = 100 — 2z (we can throw out y = 0). Substitute this into the second equation
to find that = = 100/3. Therefore, y = 100/3 and z = 100/3. These are the three numbers we wanted.

Alternative 2: Using Lagrange Multipliers,

yz = A
rz = A
xy = A

r+y+z =100

From the first three equations, if we do not allow zero (then P = 0), we have x = y = z. Substitute into
the fourth equation to see that x =y = z = 100/3.

Find the equation of the tangent plane and normal line to the given surface at the specified point:
2% -322=3  (2,-1,1)
SOLUTION: This is an implicitly defined surface of the form F(x,y,z) = k, therefore, we know that

VF is orthogonal to the tangent planes on the surface. Compute VF at (2,—1,1), and construct the
plane and line:

F,=2x F,=4y F,=-6z = VF(2,—1,1)=(4,—4,—6)



14.

15.

16.

17.

18.

Thus, the tangent plane is:
4z —2)—4(y+1)—6(z—1)=0

The normal line goes in the direction of the gradient, starting at the given point. In parametric form,

x(t)=2+4t ylt)=—-1—-4t =z(t)=1-6t

Ifz=a?—y* o =w+4t, y=w?—5t+4, w=1r2—>5u, t =3r+ 5u, find dz/0r.
SOLUTION: Use a chart to keep track of the variables; see the solution attached.

If 2% + 52 + 2% = 32yz and we treat z as an implicit function of x,y, then find 9z/0x and dz/dy.

SOLUTION: Let us define F(x,y,2) = 2% + y* + 2% — 3zyz in keeping with the notation from the text.
Then we compute:

?JrFyaerFz%:Oé 0z —F, —(2r—3yz)
x

F =0=F, - -~ = —
(z,y.2) Oz Ox Ox F, 2z — 3zy

Similarly, we can show that
0z _ —F, _ —(2y — 3z2)
oy F.  2z—3zy

If a(t) = —10k and v(0) =i+ j — k, r(0) = 2i + 3j, find the velocity and position vector functions.
SOLUTION:
v(t) = /a(t) dt = (0,0, —10t) + vo = (1,1,-10t — 1)

And antidifferentiate once more:

r@%:/v@ﬁﬁ:<au—&2—ﬂ+ﬁb:<ﬁ+Zﬁ+&—&2—w

Find the equation of the normal line through the level curve 4 = \/bz — 4y at (4, 1) using a gradient.

SOLUTION: The gradient of g is orthogonal to its level curve at /bx — 4y = 4. Find the gradient of g
at (4,1):
1
Vg=-(5,—4
9=735(5-4)

For the line, we simply need to move in the direction of the gradient, so we can simplify the direction to
(5, —4) (not necessary, but easier for the algebra).

Therefore, the line (in parametric and symmetric form) is:

t) =445t y(t)=1-4t =7 —
o) =445t y() R
Notice that the slope is —4/5. If we wanted to check our answer, we could find the slope of the tangent
line: J J 5
Y Y
br—4y=16 = 5—-4—=0 = —==-
e dz dr ~ 4

Find all points at which the direction of fastest change in the function f(z,y) = 2 +y? — 2z — 4y is
i+ 7.
SOLUTION: The direction of the fastest increase is in the direction of the gradient. Therefore, another
way to phrase this question is: When is the gradient pointing in the direction of (1,1) (very reminiscent
of the Lagrange Multiplier):

Vi=k(1,1) = (2z—2,2y—4)=(k,k)

So k = 2z — 2 and k = 2y — 4, therefore, the points are on the line 2 — 2 =2y — 4, or y =z + 1. Our
conclusion: There are an infinite number of possibilities- All of the form (a,a + 1), which result in the
gradient:

(2a —2)(1,1,) a>1



19.

20.

21.

22.

Find the volume of the largest rectangular box in the first octant with three faces in the coordinate
planes and one vertex in the plane x + 2y + 3z = 6.

SOLUTION: The volume is V' = xyz subject to the constraint that = + 2y + 3z = 6.

Alternative 1: Take V = %:ry(G — x — 2y), then find the CPs. The only CP with no zeros is x = 2,y =
1,2 =2/3.

Alternative 2: Use Lagrange Multipliers to get the same answer (probably much quicker).

Find and classify the critical points:
flz,y) =4+2° +y° -3y
SOLUTION: The partial derivatives are:

fm:3x2_3y fy:?’yQ_?’m foz =62 fyy:6y fmy:_g
The critical points are where 2 = y and y? = z, so x,y are both zero or positive:

t=r = 2'-2=0 = z@*-1)=0

sox=0,y=0o0r x =1,y =1. Put these points into the Second Derivatives Test:
f22(0,0) £, (0,0) — £2,(0,0) = =9 <0 = The origin is a SADDLE
Joa(L1) fyy(1,1) = £2,(1,1) =36 =9 >0 fue(1,1) > 0= Local MIN

Let f(z,y) = x — y?. Find the gradient of f at (3, —1). We said that this gradient was perpendicular to
a level curve of f- Which one? Draw a sketch showing the level curve and the gradient vector, then find
the equation of the tangent line to the level curve and the equation of the normal line.

SOLUTION: The level curve is the one that contains the given point (in this case, (3,—1)): Substitute
to get 3 — 1 = 2, so the curve is ¢ — y2 = 2 or z — 2 = y?, which is a sideways parabola shifted to the
right two units. The gradient at (3, —1) is (1,2). The tangent line has slope —1/2:

1
Tangent Line: 1(z +3) +2(y+1)=0o0ry+1= fi(x -3)

1
Normal Line:x =3 +t,y = -1+ 2t or v+t

=(x—-3)ory+1=2(z—-3)
Find the equation of the tangent plane to the surface implicitly defined below at the point (1,1, 1):
23+ 3+ 22 =9—6ayz

SOLUTION: First write this as F(z,y, z) = 0, then the gradient of F' is the normal vector for the plane
(evaluated at (1,1,1)):
F(x,y,2) =23+ + 22+ 6ryz —9=0

Then, at (1,1,1)
F,=32>+6yz F,=3y*+6rz F,=322+6zy = VF=(9,9,9)
Therefore, the tangent plane is:
9z —-—1)+9@y—-1)+9=2-1)=0
Alternate and Note: We could have used the following formulas to compute the tangent plane:

p— — Faj p—

~F,
Zp = 7 =

-1 Zy = ja
z

-1

to write the tangent plane as:



23. Find parametric equations of the tangent line at the point (—2,2,4) to the curve of intersection of the
surface z = 222 — 9% and z = 4. (Hint: In which direction should the tangent line go?)

The curve is 222 —y? = 4, which is an ellipse (at height 4 in 3-d). The gradient is (4x, —2y) so at (—2,2),
the gradient is < —8,—4 >, so the tangent line (in the xy plane) is:

—8(x+2)—4(y—2)=0 or y=-2x+2)+2
The tangent line can be expressed as:
(t,=2(t+2)+2,4)
(But there are multiple ways of expressing it).
24. Find and classify the critical points:

flzy) =a® =3z +y" —2y°

SOLUTION: We use the second derivatives test to classify the critical points as local min, local max or
saddle.

Solving for the CPs, we get:

folz,y) =32 =3=0  fy(z,y) =4y —4y=0

from which we get x = +1,y = 41 and = = £1,y = 0 Continuing with second derivatives,

D(x,y) = ji:ﬁ Lj;iz ] = ‘ % 12,7 4 ] = 2a(3y” ~ 1)

We’ll arrange the results in a list:

Point D and Classification

(1,1) 48 : Local Min
(1,-1) 48 : Local Min

(1,0) —24: Saddle
(—1,1) —48 : Saddle
(-1,-1) —48 : Saddle
(—1,0) 24 : Local Max




