Exam 2 Sample Solutions

Be sure to look over your old quizzes and homework as well. For limits, we will provide a graph and contours. No calculators will be allowed for this exam.

- 1. True or False, and explain:
 - (a) There exists a function f with continuous second partial derivatives such that

$$f_x(x,y) = x + y^2$$
 $f_y = x - y^2$

SOLUTION: False. If the function has continuous second partial derivatives, then Clairaut's Theorem would apply (and $f_{xy} = f_{yx}$). However, in this case:

$$f_{xy} = 2y \qquad f_{yx} = -2y$$

(b) The function f below is continuous at the origin.

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + 2y^2}, & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

SOLUTION: Check the limit- First, how about y = x versus y = -x?

$$\lim_{(x,x)\to(0,0)}\frac{2x^2}{3x^2}=\frac{2}{3} \qquad \lim_{(x,-x)\to(0,0)}\frac{-2x^2}{3x^2}=\frac{-2}{3}$$

Yep, that did it- The limit does not exist at the origin, therefore the function is not continuous at the origin (it is continuous at all other points in the domain).

(c) If $\vec{r}(t)$ is a differentiable vector function, then

$$\frac{d}{dt}|\vec{r}(t)| = |\vec{r}'(t)|$$

SOLUTION: False.

$$\frac{d}{dt}|\mathbf{r}(t)| = \frac{1}{2}(\mathbf{r}(t) \cdot \mathbf{r}(t))^{-1/2} \left(\mathbf{r}'(t) \cdot \mathbf{r}(t) + \mathbf{r}(t) \cdot \mathbf{r}'(t)\right) = \frac{\mathbf{r}'(t) \cdot \mathbf{r}(t)}{|\mathbf{r}(t)|}$$

Extra: If you're not sure about it, try to verify the formula with $\mathbf{r}(t) = \langle 3t^2, 6t - 5 \rangle$.

(d) If $z = 1 - x^2 - y^2$, then the linearization of z at (1,1) is

$$L(x,y) = -2x(x-1) - 2y(y-1)$$

SOLUTION: False for two reasons. We have forgotten to evaluate the partial derivatives of f at the base point (1,1) (and so the resulting formula is not linear). We have also forgotten to evaluate the function itself at (1,1). The linearization should be:

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) = -1 - 2(x-1) - 2(y-1)$$

(e) We can always use the formula: $\nabla f(a,b) \cdot \vec{u}$ to compute the directional derivative at (a,b) in the direction of \vec{u} .

SOLUTION: False. This formula only works if f is differentiable at (a, b) (See Exercise 4 below).

(f) Different parameterizations of the same curve result in identical tangent vectors at a given point on the curve.

SOLUTION: False. The magnitude of $\mathbf{r}(t)$ is the velocity. For example, $\mathbf{r}(3t)$ will have a magnitude that is three times that of the original- If you want an actual example, consider

$$\mathbf{r}(t) = \langle \cos(t), \sin(t) \rangle$$

At the point on the unit circle $(1/\sqrt{2}, 1/\sqrt{2})$, the magnitude of $\mathbf{r}'(\pi/4) = 1$. Replace t by 3t (and evaluate at $t = \pi/12$ to have the same point on the curve), and the speed is 3 instead of 1.

Why did we bring this up? If we re-parameterize with respect to arc length, the velocity is always 1 unit (so at s = 1, you've traveled one unit of length, etc).

1

(g) If $\vec{u}(t)$ and $\vec{v}(t)$ are differentiable vector functions, then

$$\frac{d}{dt} \left[\vec{u}(t) \times \vec{v}(t) \right] = \vec{u}'(t) \times \vec{v}'(t)$$

SOLUTION: False. It looks like the product rule:

$$\frac{d}{dt}\left[\vec{u}(t)\times\vec{v}(t)\right] = \vec{u}'(t)\times\vec{v}(t) + \vec{u}(t)\times\vec{v}'(t)$$

- (h) If $f_x(a,b)$ and $f_y(a,b)$ both exist, then f is differentiable at (a,b). SOLUTION: False. Our theorem says that in order to conclude that f is differentiable at (a,b), the partial derivatives must be *continuous* at (a,b). Just having the partial derivatives exist at a point is a weak condition. It is not enough to even have continuity.
- (i) At a given point on a curve $(x(t_0), y(t_0), z_0(t))$, the osculating plane through that point is the plane through $(x(t_0), y(t_0), z(t_0))$ with normal vector is $\vec{B}(t_0)$. SOLUTION: True (by definition).
- 2. Show that, if $|\vec{r}(t)|$ is a constant, then $\vec{r}'(t)$ is orthogonal to $\vec{r}(t)$. (HINT: Differentiate $|\vec{r}(t)|^2 = k$) SOLUTION: Using the hint,

$$0 = \frac{d}{dt} k = \frac{d}{dt} (|\vec{r}(t)|^2) = \frac{d}{dt} (\vec{r}(t) \cdot \vec{r}(t)) = \vec{r}'(t) \cdot \vec{r}(t) + \vec{r}(t) \cdot \vec{r}'(t) = 2\vec{r}'(t) \cdot \vec{r}(t)$$

Therefore, the dot product is zero (and so $\vec{r}'(t)$ and $\vec{r}(t)$ are orthogonal).

3. Reparameterize the curve with respect to arc length measuring from t = 0 in the direction of increasing t:

$$\mathbf{r} = 2t\mathbf{i} + (1 - 3t)\mathbf{j} + (5 + 4t)\mathbf{k}$$

SOLUTION: Find s as a function of t, invert it then substitute it back into the expression so that \mathbf{r} is a function of s. In this case,

$$s = \int_0^t |\mathbf{r}'(u)| \, du = \sqrt{29} \, t$$

Therefore, $t = s/\sqrt{29}$, and

$$\mathbf{r}(s) = \left\langle \frac{2}{\sqrt{29}}s, 1 - \frac{3}{\sqrt{29}}s, 5 + \frac{4}{\sqrt{29}}s \right\rangle$$

4. Is it possible for the directional derivative to exist for every unit vector \vec{u} at some point (a, b), but f is still not differentiable there?

Consider the function $f(x,y) = \sqrt[3]{x^2y}$. Show that the directional derivative exists at the origin (by letting $\vec{u} = \langle \cos(\theta), \sin(\theta) \rangle$ and using the **definition**), BUT, f is not differentiable at the origin (because if it were, we could use $\nabla f \cdot \vec{u}$ to compute $D_{\vec{u}}f$).

SOLUTION: Compute the directional derivative at the origin by using the definition:

$$D_u f(0,0) = \lim_{h \to 0} \frac{f(0 + h\cos(\theta), 0 + h\sin(\theta)) - f(0,0)}{h} = \lim_{h \to 0} \frac{h\sqrt[3]{\cos^2(\theta)\sin(\theta)}}{h} = \sqrt[3]{\cos^2(\theta)\sin(\theta)}$$

Notice that by using the definition, $\theta = 0$ corresponds to the rate of change parallel to the x-axis, and $\theta = \pi/2$ is the rate of change parallel to the y-axis:

$$f_x(0,0) = 0$$
 $f_y(0,0) = 0$

so that, if f were differentiable at the origin, we could use

$$D_u f = \nabla f \cdot \vec{u} = 0$$

for every vector \vec{u} , but that is not the case (our directional derivative is not always zero).

5. If $f(x,y) = \sin(2x+3y)$, then find the linearization of f at (-3,2).

SOLUTION: We have $f(-3,2) = \sin(0) = 0$ and

$$f_x(x,y) = 2\cos(2x+3y) \implies f_x(-3,2) = 2$$

$$f_y(x,y) = 3\cos(2x+3y) \Rightarrow f_y(-3,2) = 3$$

Therefore,

$$L(x,y) = 0 + 2(x+3) + 3(y-2) = 2(x+3) + 3(y-2)$$

6. The radius of a right circular cone is increasing at a rate of 3.5 inches per second while its height is decreasing at a rate of 4.3 inches per second. At what rate is the volume changing when the radius is 160 inches and the height is 200 inches? $(V = \frac{1}{3}\pi r^2 h)$

SOLUTION:

$$\frac{dV}{dt} = \frac{2}{3}\pi rh\frac{dr}{dt} + \frac{1}{3}\pi r^2 \frac{dh}{dt}$$

Use r = 160, h = 200, dr/dt = 3.5 and dh/dt = -4.3, $dV/dt \approx 37973.3\pi$

7. Find the differential of the function: $v = y \cos(xy)$

SOLUTION:

$$dv = v_x dx + v_y dy = (-y^2 \sin(xy) dx + (\cos(xy) - xy \sin(xy)) dy$$

8. Find the maximum rate of change of $f(x,y) = x^2y + \sqrt{y}$ at the point (2,1), and the direction in which it occurs.

SOLUTION: The maximum rate of change occurs if we move in the direction of the gradient. We see this by recalling that:

$$D_u f = \nabla f \cdot \vec{u} = |\nabla f| \cos(\theta)$$

so we find the gradient at the point (2,1)

$$\nabla f = \langle 4, 9/2 \rangle$$

So if we move in that direction, the we get the max rate of change, which is

$$|\nabla f| = \sqrt{4^2 + \frac{81}{4}} = \frac{\sqrt{145}}{2} \approx 6.02$$

9. Find an expression for

$$\frac{d}{dt} \left[\mathbf{u}(t) \cdot (\mathbf{v}(t) \times \mathbf{w}(t)) \right]$$

SOLUTION:

$$\frac{d}{dt} \left[\mathbf{u}(t) \cdot (\mathbf{v}(t) \times \mathbf{w}(t)) \right] = \mathbf{u}' \cdot (\mathbf{v} \times \mathbf{w}) + \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})'$$

Taking this derivative, we see that

$$\frac{d}{dt} \left[\mathbf{u}(t) \cdot (\mathbf{v}(t) \times \mathbf{w}(t)) \right] = \mathbf{u}' \cdot (\mathbf{v} \times \mathbf{w}) + \mathbf{u} \cdot (\mathbf{v}' \times \mathbf{w} + \mathbf{v} \times \mathbf{w}')$$

10. Use Lagrange Multipliers to find the maximum and minimum of f subject to the given constraints:

$$f(x,y) = x^2y$$
 $x^2 + y^2 = 1$

SOLUTION:

At optimality, the gradients are parallel, so the system of equations we are solving is given below:

$$2xy = 2\lambda x
x^2 = 2\lambda y
x^2 + y^2 = 1$$

If $x \neq 0$ in the first equation, then $\lambda = y$. Going to the second equation, that implies that $x^2 = 2y^2$. Now to the third equation, we can solve for y, and therefore also x:

$$3y^2 = 1$$
 \Rightarrow $y = \pm \sqrt{\frac{1}{3}}$ \Rightarrow $x = \pm \sqrt{\frac{2}{3}}$

Are there any other solutions? If x = 0 in the first equation, then $y = \pm 1$ from the third equation in that case, $f(0, \pm 1) = 0$.

Substitute into f and we find the max and min:

$$f\left(\pm\sqrt{\frac{2}{3}},\sqrt{\frac{1}{3}}\right) = \frac{2}{3\sqrt{3}}$$
 $f\left(\pm\sqrt{\frac{2}{3}},-\sqrt{\frac{1}{3}}\right) = \frac{-2}{3\sqrt{3}}$

11. The curves below intersect at the origin. Find the angle of intersection to the nearest degree:

$$\vec{r}_1(t) = \langle t, t^2, t^9 \rangle$$
 $\vec{r}_2(t) = \langle \sin(t), \sin(5t), t \rangle$

SOLUTION:

The angle of intersection is the angle between the tangent vectors at the origin. First differentiate, then evaluate at t = 0:

$$\vec{r_1}'(t) = \langle 1, 2t, 9t^8 \rangle$$
 $\vec{r_2}'(t) = \langle \cos(t), 5\cos(5t), 1 \rangle$ \Rightarrow $\langle 1, 0, 0 \rangle, \langle 1, 5, 1 \rangle$

To find the angle, we use the relationship:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos(\theta)$$

In our case:

$$\cos(\theta) = \frac{1}{\sqrt{1^2 + 5^2 + 1^2}} \quad \Rightarrow \quad \theta = \cos^{-1}(1/\sqrt{27}) \approx 79^{\circ}$$

12. Find three positive numbers whose sum is 100 and whose product is a maximum.

SOLUTION: Let x, y, z be the three numbers. Then we want to find the maximum of P(x, y, z) = xyz subject to the constraint that x + y + z = 100 and they are all positive.

Alternative 1: Let P(x,y) = xy(100 - x - y). The critical points are

$$y(100 - x - y) - xy = 0$$

 $x(100 - x - y) - xy = 0$

From the first equation, y = 100 - 2x (we can throw out y = 0). Substitute this into the second equation to find that x = 100/3. Therefore, y = 100/3 and z = 100/3. These are the three numbers we wanted.

Alternative 2: Using Lagrange Multipliers,

$$yz = \lambda$$

$$xz = \lambda$$

$$xy = \lambda$$

$$x + y + z = 100$$

From the first three equations, if we do not allow zero (then P=0), we have x=y=z. Substitute into the fourth equation to see that x=y=z=100/3.

13. Find the equation of the tangent plane and normal line to the given surface at the specified point:

$$x^2 + 2y^2 - 3z^2 = 3 \qquad (2, -1, 1)$$

SOLUTION: This is an implicitly defined surface of the form F(x, y, z) = k, therefore, we know that ∇F is orthogonal to the tangent planes on the surface. Compute ∇F at (2, -1, 1), and construct the plane and line:

$$F_x = 2x$$
 $F_y = 4y$ $F_z = -6z$ \Rightarrow $\nabla F(2, -1, 1) = \langle 4, -4, -6 \rangle$

Thus, the tangent plane is:

$$4(x-2) - 4(y+1) - 6(z-1) = 0$$

The normal line goes in the direction of the gradient, starting at the given point. In parametric form,

$$x(t) = 2 + 4t$$
 $y(t) = -1 - 4t$ $z(t) = 1 - 6t$

14. If $z = x^2 - y^2$, x = w + 4t, $y = w^2 - 5t + 4$, $w = r^2 - 5u$, t = 3r + 5u, find $\partial z/\partial r$.

SOLUTION: Use a chart to keep track of the variables; see the solution attached.

15. If $x^2 + y^2 + z^2 = 3xyz$ and we treat z as an implicit function of x, y, then find $\partial z/\partial x$ and $\partial z/\partial y$. SOLUTION: Let us define $F(x, y, z) = x^2 + y^2 + z^2 - 3xyz$ in keeping with the notation from the text. Then we compute:

$$F(x,y,z) = 0 \Rightarrow F_x \frac{\partial x}{\partial x} + F_y \frac{\partial y}{\partial x} + F_z \frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x} = \frac{-F_x}{F_z} = \frac{-(2x - 3yz)}{2z - 3xy}$$

Similarly, we can show that

$$\frac{\partial z}{\partial y} = \frac{-F_y}{F_z} = \frac{-(2y - 3xz)}{2z - 3xy}$$

16. If $\mathbf{a}(t) = -10\mathbf{k}$ and $\mathbf{v}(0) = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{r}(0) = 2\mathbf{i} + 3\mathbf{j}$, find the velocity and position vector functions. SOLUTION:

$$\mathbf{v}(t) = \int \mathbf{a}(t) dt = \langle 0, 0, -10t \rangle + \mathbf{v}_0 = \langle 1, 1, -10t - 1 \rangle$$

And antidifferentiate once more:

$$\mathbf{r}(t) = \int \mathbf{v}(t) dt = \langle t, t, -5t^2 - t \rangle + \mathbf{r}_0 = \langle t + 2, t + 3, -5t^2 - t \rangle$$

17. Find the equation of the normal line through the level curve $4 = \sqrt{5x - 4y}$ at (4, 1) using a gradient. SOLUTION: The gradient of g is orthogonal to its level curve at $\sqrt{5x - 4y} = 4$. Find the gradient of g at (4, 1):

$$\nabla g = \frac{1}{8} \langle 5, -4 \rangle$$

For the line, we simply need to move in the direction of the gradient, so we can simplify the direction to $\langle 5, -4 \rangle$ (not necessary, but easier for the algebra).

Therefore, the line (in parametric and symmetric form) is:

$$x(t) = 4 + 5t$$
 $y(t) = 1 - 4t$ or $\frac{x-4}{5} = \frac{y-1}{-4}$

Notice that the slope is -4/5. If we wanted to check our answer, we could find the slope of the tangent line:

$$5x - 4y = 16$$
 \Rightarrow $5 - 4\frac{dy}{dx} = 0$ \Rightarrow $\frac{dy}{dx} = \frac{5}{4}$

18. Find all points at which the direction of fastest change in the function $f(x,y) = x^2 + y^2 - 2x - 4y$ is $\vec{i} + \vec{j}$.

SOLUTION: The direction of the fastest increase is in the direction of the gradient. Therefore, another way to phrase this question is: When is the gradient pointing in the direction of $\langle 1, 1 \rangle$ (very reminiscent of the Lagrange Multiplier):

$$\nabla f = k\langle 1, 1 \rangle \quad \Rightarrow \quad \langle 2x - 2, 2y - 4 \rangle = \langle k, k \rangle$$

So k = 2x - 2 and k = 2y - 4, therefore, the points are on the line 2x - 2 = 2y - 4, or y = x + 1. Our conclusion: There are an infinite number of possibilities- All of the form (a, a + 1), which result in the gradient:

$$(2a-2)\langle 1,1,\rangle$$
 $a>1$

19. Find the volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane x + 2y + 3z = 6.

SOLUTION: The volume is V = xyz subject to the constraint that x + 2y + 3z = 6.

Alternative 1: Take $V = \frac{1}{3}xy(6-x-2y)$, then find the CPs. The only CP with no zeros is x = 2, y = 1, z = 2/3.

Alternative 2: Use Lagrange Multipliers to get the same answer (probably much quicker).

20. Find and classify the critical points:

$$f(x,y) = 4 + x^3 + y^3 - 3xy$$

SOLUTION: The partial derivatives are:

$$f_x = 3x^2 - 3y$$
 $f_y = 3y^2 - 3x$ $f_{xx} = 6x$ $f_{yy} = 6y$ $f_{xy} = -3$

The critical points are where $x^2 = y$ and $y^2 = x$, so x, y are both zero or positive:

$$x^4 = x \quad \Rightarrow \quad x^4 - x = 0 \quad \Rightarrow \quad x(x^3 - 1) = 0$$

so x = 0, y = 0 or x = 1, y = 1. Put these points into the Second Derivatives Test:

$$f_{xx}(0,0)f_{yy}(0,0) - f_{xy}^2(0,0) = -9 < 0 \implies$$
 The origin is a SADDLE

$$f_{xx}(1,1)f_{yy}(1,1) - f_{xy}^2(1,1) = 36 - 9 > 0$$
 $f_{xx}(1,1) > 0 \Rightarrow$ Local MIN

21. Let $f(x,y) = x - y^2$. Find the gradient of f at (3,-1). We said that this gradient was perpendicular to a level curve of f- Which one? Draw a sketch showing the level curve and the gradient vector, then find the equation of the tangent line to the level curve and the equation of the normal line.

SOLUTION: The level curve is the one that contains the given point (in this case, (3,-1)): Substitute to get 3-1=2, so the curve is $x-y^2=2$ or $x-2=y^2$, which is a sideways parabola shifted to the right two units. The gradient at (3,-1) is $\langle 1,2\rangle$. The tangent line has slope -1/2:

Tangent Line:
$$1(x+3) + 2(y+1) = 0$$
 or $y+1 = -\frac{1}{2}(x-3)$

Normal Line:
$$x = 3 + t, y = -1 + 2t$$
 or $\frac{y+1}{2} = (x-3)$ or $y+1 = 2(x-3)$

22. Find the equation of the tangent plane to the surface implicitly defined below at the point (1,1,1):

$$x^3 + y^3 + z^3 = 9 - 6xyz$$

SOLUTION: First write this as F(x, y, z) = 0, then the gradient of F is the normal vector for the plane (evaluated at (1, 1, 1)):

$$F(x, y, z) = x^3 + y^3 + z^3 + 6xyz - 9 = 0$$

Then, at (1, 1, 1)

$$F_x = 3x^2 + 6yz$$
 $F_y = 3y^2 + 6xz$ $F_z = 3z^2 + 6xy$ \Rightarrow $\nabla F = (9, 9, 9)$

Therefore, the tangent plane is:

$$9(x-1) + 9(y-1) + 9(z-1) = 0$$

Alternate and Note: We could have used the following formulas to compute the tangent plane:

$$z_x = \frac{-F_x}{F_z} = -1$$
 $z_y = \frac{-F_y}{F_z} = -1$

to write the tangent plane as:

$$z - 1 = -(x - 1) - (y - 1)$$

23. Find parametric equations of the tangent line at the point (-2, 2, 4) to the curve of intersection of the surface $z = 2x^2 - y^2$ and z = 4. (Hint: In which direction should the tangent line go?)

The curve is $2x^2 - y^2 = 4$, which is an ellipse (at height 4 in 3-d). The gradient is $\langle 4x, -2y \rangle$ so at (-2, 2), the gradient is $\langle -8, -4 \rangle$, so the tangent line (in the xy plane) is:

$$-8(x+2) - 4(y-2) = 0$$
 or $y = -2(x+2) + 2$

The tangent line can be expressed as:

$$\langle t, -2(t+2) + 2, 4 \rangle$$

(But there are multiple ways of expressing it).

24. Find and classify the critical points:

$$f(x,y) = x^3 - 3x + y^4 - 2y^2$$

SOLUTION: We use the second derivatives test to classify the critical points as local min, local max or saddle.

Solving for the CPs, we get:

$$f_x(x,y) = 3x^2 - 3 = 0$$
 $f_y(x,y) = 4y^3 - 4y = 0$

from which we get $x = \pm 1, y = \pm 1$ and $x = \pm 1, y = 0$ Continuing with second derivatives,

$$D(x,y) = \begin{bmatrix} f_x x & f_x y \\ f_y x & f_y y \end{bmatrix} = \begin{bmatrix} 6x & 0 \\ 0 & 12y^2 - 4 \end{bmatrix} = 24x(3y^2 - 1)$$

We'll arrange the results in a list:

Point	D and Classification
(1,1)	48: Local Min
(1, -1)	48: Local Min
(1,0)	-24: Saddle
(-1,1)	-48: Saddle
(-1, -1)	-48: Saddle
(-1,0)	24: Local Max

