
Math 235: Calculus Lab

Prof. Doug Hundley

Whitman College

Weeks 7-8



This Week

This week, we’ll look at the following in LaTeX:

I How to include multiple graphs in one figure.

I How to include a bibliography.

We’ll also discuss the topics for Weeks 7-8.



Overview of Lab

Clairaut’s theorem (Section 14.3 of online book):

Suppose z = f (x , y) is defined on a disk D that contains the point
(a, b). If the functions fxy and fyx are both continuous on D, then

fxy (a, b) = fyx(a, b).

Example: f (x , y) = 3x2y + x sin(y)

fx(x , y) = 6xy + sin(y) fy (x , y) = 3x2 + x cos(y)
fxy = 6x + cos(y) fyx = 6x + cos(y)
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In Maple:

F:=3*x^2*y+x*sin(y)

First derivatives:

Fx:=diff(F,x); Fy:=diff(F,y);

Second derivatives:

Fxx:=diff(F,x$2); Fyy:=diff(F,y$2);

Mixed second derivatives:

Fxy:=diff(F,x,y); Fyx:=diff(F,y,x);



Example

Compute the partial derivative of F with respect to x at the point
(3, 1) by using the definition of the derivative (in Maple).

Fx(3, 1) =

lim
h→0

F (3 + h, 1) − F (3, 1)

h

= lim
h→0

(3(3 + h)2 + (3 + h) sin(1)) − (27 + 3 sin(1))

h

In Maple:

F:=(x,y)->3*x^2*y+x*sin(y);

F1:=(F(3+h,1)-F(3,1))/h;

F2:=limit(F1,h=0);
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Similarly, we can define Fxy :

Fxy (3, 1) =

lim
h→0

Fx(3, 1 + h) − Fx(3, 1)

h

where Fx = 6xy + sin(y).



Similarly, we can define Fxy :

Fxy (3, 1) = lim
h→0

Fx(3, 1 + h) − Fx(3, 1)

h

where Fx = 6xy + sin(y).



To get several graphs on one figure, you can put
includegraphics for each graph. For example

\begin{figure}[h]

\centering

\includegraphics[width=2.0in]{Lab02Fig01}\qquad

\includegraphics[width=2.0in]{Lab02Fig01}

\caption{This is a caption for the figure.}

\label{LabelForGraph01}

\end{figure}

See the result in the PDF version (use \quad for less space).



For the bibliography, here’s an example- Put it at the end where
you want the bib to appear.

\begin{thebibliography}{9}

\bibitem{Erdos01} P. Erd\H os, \emph{A selection

of problems and results in combinatorics}, Recent

trends in combinatorics (Matrahaza, 1995), Cambridge

Univ. Press, Cambridge, 2001, pp. 1--6.

\bibitem{Knuth92} D.E. Knuth,

\emph{Two notes on notation}, Amer.

Math. Monthly \textbf{99} (1992), 403--422.

\bibitem{DRH} D. Hundley,

\url{http://www.whitman.edu/~hundledr},

Retrieved Feb 28, 2017.

\end{thebibliography}



Now in the text, include something like:

This is obvious \cite{Erdos01}.

Which results in: This is obvious [1].

NOTES:

I If you see [?] or [??], run LaTeX again.

I For URLs, use the url package (include at the top).



As you go through the lab:

I Think about what it means (graphically) for a function to be
continuous (taking a limit in the plane).

I Compute partial derivatives in Maple and by using the
definition.

I Understand why a certain function fails to satisfy the
hypotheses of Clairaut’s Theorem.

I Write up your thoughts. Be sure to include references and
figures! Use the template to get you started.
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