Pre-Lab: Taylor Series

1. A power series based at x = a is a function of the form:

$$P(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

where c_n is a constant, for all n. What does it mean to take an "infinite" sum?

- 2. What is the radius of convergence for a power series? What is the "Ratio Test"?
- 3. Can you differentiate/integrate a power series? What is the result after doing this to P(x) defined in Problem 1?
- 4. What is a Taylor series? How is it different than a Maclaurin series?
- 5. What is the meaning of " n^{th} Taylor polynomial"? What is the meaning of $R_n(x)$ (used in Stewart's Calc text)?
- 6. How does using a Taylor series allow us to integrate functions we otherwise could not?
- 7. Do all functions have a power series representation? How can you tell if it does?
- 8. It is shown in Calculus that, if |x| < 1, then

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \tag{1}$$

Show graphically that the partial sums approximate 1/(1-x) by plotting some. That is, define:

$$f_0(x) = \frac{1}{1-x}$$
, $f_3(x) = 1 + x + x^2 + x^3$,

$$f_6(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6$$
, etc.

and plot f_0 along with functions of increasing degree. Careful in defining the domain and range windows!

9. This refers to the previous problem: Integrate both sides of Equation 1 and repeat the graphs.

1