Lab Shortcuts

Since we're running a little short on time this semester, here is a simplified
version of our lab. Our lab is dealing with the isoperimetric problem, which is:

If we want to maximize the integral
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for some constant k, then we can construct a function H (from the Lagrange Mul-

tipliers) as:
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It turns out that, for our functions x,y to be optimal, the following equations
must be true (these are called the Euler-Lagrange Equations):
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e Show that the first Euler Lagrange equation simplifies to:
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e Similarly, the second equation gives:
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e Finally, show that your previous two problems simplify to the equation of
a circle:

subject to the constraint that:

and

=0

y—Ci=—

=0 = z—Cy =

(JE — 01)2 + (y - 02)2 = /\2
Thus, the curve that gives the optimal area is a circle.



