Maple Commands for the Surface

```
restart;
with(plots):
f:=cos(beta)*(cos(alpha)+2);
g:=sin(beta)*(cos(alpha)+2);
h:=sin(alpha);
plot3d([f,g,h],alpha=0..2*Pi,beta=0..2*Pi,scaling=constrained,
    style=patchnogrid,shading=ZHUE);
```


Maple Commands for a Path

These commands assume the first section has been done. We will find a parametric representation for the path- That means α, β are functions of time. Then these are substituted into the equations for the torus.

NOTE: The end of the line for each of these is for readability. Each of these would be typed on its own line.

For this example, $\alpha=0$ and $\beta=\pi t$ so that, as t goes from 0 to $1,(\alpha, \beta)$ goes from $(0,0)$ to $(0, \pi)$. This path on the torus goes from $(3,0,0)$ to $(-3,0,0)$.

```
Path1Functions:=subs({alpha=0, beta=t*Pi},f), subs({alpha=0, beta=t*Pi},g),
    subs({alpha=0, beta=t*Pi},h);
Path1:=spacecurve([Path1Functions, t=0..1],color=black,thickness=5):
Torus1:=plot3d([f,g,h],alpha=0..2*Pi,beta=0..2*Pi,scaling=constrained,
    style=patchnogrid,shading=ZHUE):
display3d({Torus1, Path1});
```


The Arc Length

If we assume that α, β are functions of time, $0 \leq t \leq 1$, and these have been substituted into the equations for x, y and z for the surface of the torus, then we can think of x, y and z as functions of time. The arc length of this path in $3-\mathrm{d}$ is:

$$
\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

so, continuing our commands in Maple, we could write:

```
dx:=diff(Path1Functions[1],t);
dy:=diff(Path1Functions[2],t);
```

$\mathrm{dz}:=\operatorname{diff}($ Path1Functions [3], t);
PathLength: $=\operatorname{Int}\left(\operatorname{sqrt}\left(d x^{\wedge} 2+d y^{\wedge} 2+d z^{\wedge} 2\right), t=0 . .1\right)$; evalf(PathLength);

