Math 235: Calculus Lab

Prof. Doug Hundley

Whitman College

Week 10

The Torus

The torus is an object that looks like a doughnut:

Torus Construction

Our torus is built by taking the graph of the unit circle:

$$(x-2)^2 + z^2 = 1$$

and spinning it around the z-axis:

Circles

Any circle with fixed radius K can be parametrized by one number. The central angle, θ .

Circles

Any circle with fixed radius K can be parametrized by one number. The central angle, θ .

That is, for any point on circle of radius K, we can express that point as:

$$x(\theta) = K \cos(\theta)$$

$$y(\theta) = K \sin(\theta)$$

Obtaining a Point on the Torus

To obtain any point on the surface of the torus we will:

▶ Start on the circle $(x-2)^2 + z^2 = 1$, and rotate through an angle α .

So far, before we rotate into the *xy*-plane,

$$R = \cos(\alpha) + 2$$
$$z = \sin(\alpha)$$

We rotate to get the x and y coordinates...

$$x = R \cos(\beta)$$

$$x = R\cos(\beta) = \cos(\beta)(\cos(\alpha) + 2)$$

$$y = R \sin(\beta) =$$

$$x = R\cos(\beta) = \cos(\beta)(\cos(\alpha) + 2)$$

$$y = R \sin(\beta) = \sin(\beta)(\cos(\alpha) + 2)$$

$$x = R\cos(\beta) = \cos(\beta)(\cos(\alpha) + 2)$$

$$y = R\sin(\beta) = \sin(\beta)(\cos(\alpha) + 2)$$

$$z = \sin(\alpha)$$
 unchanged

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

$$\beta = 0, \alpha = 0 \Rightarrow$$

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

$$\beta = 0, \alpha = 0 \Rightarrow (3,0,0)$$

$$\beta = \pi/2, \alpha = \pi \implies$$

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

$$eta=0, lpha=0 \quad \Rightarrow \quad (3,0,0)$$
 $eta=\pi/2, lpha=\pi \quad \Rightarrow \quad (0,1,0)$ $eta=\pi, lpha=0 \quad \Rightarrow$

The surface of the torus can be expressed as:

$$x = \cos(\beta)(\cos(\alpha) + 2)$$
$$y = \sin(\beta)(\cos(\alpha) + 2)$$
$$z = \sin(\alpha)$$

$$\beta = 0, \alpha = 0 \quad \Rightarrow \quad (3, 0, 0)$$

$$\beta = \pi/2, \alpha = \pi \quad \Rightarrow \quad (0, 1, 0)$$

$$\beta = \pi, \alpha = 0 \quad \Rightarrow \quad (-3, 0, 0)$$

Curves in the (β, α) plane:

If
$$\beta=\beta(t)$$
 and $\alpha=\alpha(t)$, then substituting these into
$$x=\cos(\beta)(\cos(\alpha+2))$$

$$y=\sin(\beta)(\cos(\alpha+2))$$

$$z=\sin(\alpha)$$

Creates the curve $\langle x(t), y(t), z(t) \rangle$ on the surface.

Path 1 keeps $\alpha = 0$ and β ranging from 0 to π . Therefore:

$$\beta(t) = \pi t \alpha(t) = 0$$
 \Rightarrow
$$x(t) = 3\cos(\pi t) y(t) = 3\sin(\pi t) z(t) = 0$$

Path 1 keeps $\alpha=0$ and β ranging from 0 to π . Therefore:

$$\beta(t) = \pi t \alpha(t) = 0$$
 \Rightarrow
$$x(t) = 3\cos(\pi t) y(t) = 3\sin(\pi t) z(t) = 0$$

The path length is

Path 1 keeps $\alpha = 0$ and β ranging from 0 to π . Therefore:

$$\beta(t) = \pi t \alpha(t) = 0$$
 \Rightarrow
$$x(t) = 3\cos(\pi t) y(t) = 3\sin(\pi t) z(t) = 0$$

The path length is half the circumference of a circle of radius 3:

Path 1 keeps $\alpha=0$ and β ranging from 0 to π . Therefore:

$$\beta(t) = \pi t \alpha(t) = 0$$
 \Rightarrow
$$x(t) = 3\cos(\pi t) y(t) = 3\sin(\pi t) z(t) = 0$$

The path length is half the circumference of a circle of radius 3:

$$3\pi$$

.

[Plot in the
$$(\beta, \alpha)$$
 plane]

Path 2 is actually 3 paths:

$$(0,0)\rightarrow (0,\pi)\rightarrow (\pi,\pi)\rightarrow (\pi,0)$$

Path 2A: $\beta = 0$, $\alpha = \pi t$

Path 2B: $\beta = \pi t$, $\alpha = \pi$

Path 2C: $\beta = \pi$, $\alpha = \pi(1 - t)$

In Maple, do these separately, and plot them all together.

Path Length: $\pi + \pi + \pi = 3\pi$

[plot in (β, α) plane]

In this case, take β from 0 to π . Then α will go from 0 to 2π .

$$\beta(t) = \pi t \alpha(t) = 2\pi t$$
 \Rightarrow
$$x(t) = \cos(\pi t)(\cos(2\pi t) + 2) y(t) = \sin(\pi t)(\cos(2\pi t) + 2) z(t) = \sin(2\pi t)$$