Math 235: Calculus Lab

Prof. Doug Hundley

Whitman College

Week 11

This Week:

- A piecewise defined path.
- Optimizing over a family of paths.
- Discussion of the Lab.

This Week:

- A piecewise defined path.
- Optimizing over a family of paths.
- Discussion of the Lab.

Next Week: Nothing new. Continue (or start) typesetting your paper. Be sure to think about the comments from earlier papers!

In the (β, α) plane, we have three parts:

• (0,0) to $(0,\pi)$, Parametrization:

In the (β, α) plane, we have three parts:

lacksquare (0,0) to (0, π), Parametrization: eta(t)=0, $lpha(t)=\pi t$)

In the (β, α) plane, we have three parts:

- (0,0) to $(0,\pi)$, Parametrization: $\beta(t)=0$, $\alpha(t)=\pi t$)
- $(0,\pi)$ to (π,π) , Parametrization:

In the (β, α) plane, we have three parts:

- ▶ (0,0) to $(0,\pi)$, Parametrization: $\beta(t)=0$, $\alpha(t)=\pi t$
- ▶ $(0,\pi)$ to (π,π) , Parametrization: $\beta(t)=\pi t$, $\alpha(t)=\pi$

In the (β, α) plane, we have three parts:

- ▶ (0,0) to $(0,\pi)$, Parametrization: $\beta(t)=0$, $\alpha(t)=\pi t$
- ▶ $(0,\pi)$ to (π,π) , Parametrization: $\beta(t)=\pi t$, $\alpha(t)=\pi$
- (π, pi) to $(\pi, 0)$, Parametrization:

In the (β, α) plane, we have three parts:

- ▶ (0,0) to $(0,\pi)$, Parametrization: $\beta(t)=0$, $\alpha(t)=\pi t$
- ▶ $(0,\pi)$ to (π,π) , Parametrization: $\beta(t)=\pi t$, $\alpha(t)=\pi$
- (π, pi) to $(\pi, 0)$, Parametrization: $\beta(t) = \pi$, $\alpha(t) = \pi(1 t)$

Implementation in Maple (See worksheet)

The Torus

The Paths

```
xt:=0: yt:=Pi*t:
Path2AF:=subs({beta=xt,alpha=yt},f),
         subs({beta=xt,alpha=yt},g),
         subs({beta=xt, alpha=yt},h):
xt:=Pi*t: yt:=Pi:
Path2BF:=subs({beta=xt,alpha=yt},f),
         subs({beta=xt,alpha=yt},g),
         subs({beta=xt, alpha=yt},h):
xt:=Pi: yt:=Pi*t:
Path2CF:=subs({beta=xt,alpha=yt},f),
         subs({beta=xt,alpha=yt},g),
         subs({beta=xt, alpha=yt},h):
```

The Path Lengths

Why the square brackets?

The Path Lengths

Why the square brackets?

The variable Path2AF is a list of three things (with no delimiters around them).

Putting square brackets around it make it one "thing", so the derivative operation will work.

Graphics

Rather than going from (0,0) to $(\pi/2,\pi)$ as we did in Path 3, let β go from 0 to an unknown value, k as α runs from 0 to π .

Path 4 in the (β, α) plane:

$$(0,0)\rightarrow (k,\pi)\rightarrow (?,\pi)\rightarrow (\pi,0)$$

To be symmetric, the unknown should be:

Rather than going from (0,0) to $(\pi/2,\pi)$ as we did in Path 3, let β go from 0 to an unknown value, k as α runs from 0 to π .

Path 4 in the (β, α) plane:

$$(0,0) \rightarrow (k,\pi) \rightarrow (?,\pi) \rightarrow (\pi,0)$$

To be symmetric, the unknown should be: $\pi - k$.

Rather than going from (0,0) to $(\pi/2,\pi)$ as we did in Path 3, let β go from 0 to an unknown value, k as α runs from 0 to π .

Path 4 in the (β, α) plane:

$$(0,0) \rightarrow (k,\pi) \rightarrow (?,\pi) \rightarrow (\pi,0)$$

To be symmetric, the unknown should be: $\pi - k$.

Path 4A:
$$(0,0)$$
 to (k,π)

Rather than going from (0,0) to $(\pi/2,\pi)$ as we did in Path 3, let β go from 0 to an unknown value, k as α runs from 0 to π .

Path 4 in the (β, α) plane:

$$(0,0) \rightarrow (k,\pi) \rightarrow (?,\pi) \rightarrow (\pi,0)$$

To be symmetric, the unknown should be: $\pi - k$.

Path 4A: (0,0) to (k,π)

Path 4B: (k,π) to $(\pi-k,\pi)$

Rather than going from (0,0) to $(\pi/2,\pi)$ as we did in Path 3, let β go from 0 to an unknown value, k as α runs from 0 to π .

Path 4 in the (β, α) plane:

$$(0,0) \rightarrow (k,\pi) \rightarrow (?,\pi) \rightarrow (\pi,0)$$

To be symmetric, the unknown should be: $\pi - k$.

Path 4A: (0,0) to (k,π)

Path 4B: (k,π) to $(\pi-k,\pi)$

Path 4C: $(\pi - k, \pi)$ to $(\pi, 0)$.

Rather than going from (0,0) to $(\pi/2,\pi)$ as we did in Path 3, let β go from 0 to an unknown value, k as α runs from 0 to π .

Path 4 in the (β, α) plane:

$$(0,0) \rightarrow (k,\pi) \rightarrow (?,\pi) \rightarrow (\pi,0)$$

To be symmetric, the unknown should be: $\pi - k$.

Path 4A: (0,0) to (k,π) Path 4B: (k,π) to $(\pi-k,\pi)$

Path 4C: $(\pi - k, \pi)$ to $(\pi, 0)$.

Make the appropriate changes to the Maple file. What values should we allow k to take?

Once we get the paths:

- ▶ Path 4A: xt:=k*t; yt:=Pi*t
- ▶ Path 4B: xt:= k*(1-t)+(Pi-k)*t
- ▶ Path 4C: xt:=(Pi-k)*(1-t)+Pi*t yt:=Pi*(1-t)

Be Sure To Use capital I for the Integral!

Once we get the paths:

- ▶ Path 4A: xt:=k*t; yt:=Pi*t
- ▶ Path 4B: xt:= k*(1-t)+(Pi-k)*t
- ▶ Path 4C: xt:=(Pi-k)*(1-t)+Pi*t yt:=Pi*(1-t)

Be Sure To Use capital I for the Integral!

- ▶ The path length depends on k. Plot it!
- ▶ Now find the optimal value of the path length!

Sample solution in Maple:

```
xt:=k*t; yt:=Pi*t;
Path3AF:=subs... (Same as before)
xt:=k*(1-t)+(Pi-k)*t; yt:=Pi;
Path3BF:=subs... (Same as before)
xt:=(Pi-k)*(1-t)+Pi*t; yt:=Pi*(1-t);
Path3CF:=subs... (Same as before)
dP1:=diff([Path3AF],t); dP2:=diff([Path3BF],t); dP3:=diff(
```

```
Integrand1:=simplify(dP1[1]^2+dP1[2]^2+dP1[3]^2); Integrand2:=simplify(dP2[1]^2+dP2[2]^2+dP2[3]^2); Integrand3:=simplify(dP3[1]^2+dP3[2]^2+dP3[3]^2); PathLength:=Int(sqrt(Integrand1),t=0..1)+ Int(sqrt(Integrand2),t=0..1)+ Int(sqrt(Integrand3),t=0..1); plot(PathLength,k=0..Pi/2); What should your graph be? At k=0? k=\pi/2?
```

To find the minimum, we set the derivative to zero. We'll need to do it numerically, so we need an approximate answer.

- Find an expression for the derivative.
- Plot the derivative to get an approximate answer.
- Use the approximation in fsolve
- Find the numerical value of the best path.

In Maple:

```
dPath:=diff(PathLength,k);
plot(dPath,k=0..Pi/2);
BestK:=fsolve(dPath=0,k=Pi/4..5*Pi/16);
evalf(subs(k=BestK,PathLength));
```

Continuing: Plot the resulting path in Maple

```
Path3A:=subs(k=BestK,[Path3AF]);
Path3B:=subs(k=BestK,[Path3BF]);
Path3C:=subs(k=BestK,[Path3CF]);
P1:=spacecurve(Path3A,t=0..1,color=black,thickness=5):
P2:=spacecurve(Path3B,t=0..1,color=black,thickness=5):
P3:=spacecurve(Path3C,t=0..1,color=black,thickness=5):
display3d(Torus1,P1,P2,P3);
```