Lab 5, Calc Lab: Curve Fitting

April 7, 2004

1 Matlab Info

In general, Matlab has made it easy to fit a line to data, with some other types of functions. In this lab, we'll explore some modeling problems that will first require a transformation of the data before we can use Matlab.

In Matlab, we'll plot the data, then use the "Basic Fitting" tools. We'll save the coefficients for later use.

2 Chemistry: Enzyme Kinetics

There is some theory in chemistry that proposes the following model for the rate of an enzymatic reaction:

$$v = \frac{K_{\max} c}{k_n + c}$$

where c is the concentration of substrate and v is the reaction speed. The model parameters are the constants K_{max} and k_n .

1. Before doing any work, are there vertical and/or horizontal asymptotes for v? In Matlab, choose some random coefficients for K_{max} and $k_n > 0$, and plot the function so that you get a feeling for what this is doing.

Kmax=1; kn=56; c=linspace(0, 100); v=(Kmax*c)./(kn+c); plot(c,v);

2. The function is not linear in its parameters. The main problem is that we cannot simplify the denominator of the fraction. However, notice that:

$$\frac{1}{v} = \frac{k_n + c}{K_{\max}c} = \frac{k_n}{K_{\max}c} + \frac{1}{K_{\max}} = \frac{k_n}{K_{\max}} \cdot \frac{1}{c} + \frac{1}{K_{\max}}$$

Now by letting $y = \frac{1}{v}$ and $x = \frac{1}{c}$, we have a line, y = mx + b. To get back to the model function,

$$K_{\max} = \frac{1}{b}$$
 and $k_n = \frac{m}{b}$

Some data is given next. We will proceed in our analysis by:

- Plot 1/c versus 1/v.
- Use the basic fitting tools to determine the line of best fit- we want the slope and intercept.
- Use the slope and intercept to find the values of K_{max} and k_n .
- Plot the original data together with the "best fitting" original curve.

You might want to do these steps as a script file so that you have your example typed up.

3. The data is given as:

c	5	10	20	40	50	100
v	0.068	0.126	0.218	0.345	0.39	0.529

You may either type in the data directly or go to the class website and download Enzyme Data Set 1.

2.1 Homework Problem

We'll change the model slightly to a *sigmoidal* function,

$$v = K_{\max} \frac{c^2}{k^2 + c^2}$$

- Change the model into a linear form.
- Download the data set Enzyme Homework Data Set from the class website.
- Find the best fitting parameters.
- Plot the original data (as points) and the model function.
- Turn in your plot and your script file.

3 Population Modeling

A population model with an environmental limit on the growth of the population can be done via the following differential equation:

$$\frac{dy}{dt} = ay(b-y)$$

This is called a separable differential equation, and can be solved by partial fractions. In this case, we can write that:

$$y(t) = \frac{b}{1 + c\mathrm{e}^{-kt}}$$

where $c = e^{Cb}$ and k = ab. We want to model the population of the United States with this function, but it is not in linear form. However,

$$\frac{b}{y} = 1 + ce^{-kt} \quad \Rightarrow \quad \ln\left(\frac{b}{y} - 1\right) = \ln\left(ce^{-kt}\right) = \ln(c) - kt$$

This will partially solve our problem- c and k are now linear- but b must be estimated. Here is some data (population is in millions):

We'll estimate b = 500.

3.1 Homework:

Estimate our model parameters using the data above. The final graph you'll produce will plot:

- The original data (as red circles).
- The estimated data for all years between 1900-1999.
- Estimated data from the Census Bureau from 1900-1999 (download this from the class website).

Comment on the accuracy of this plot. Does changing b have much effect on the plot- why did we choose 500 instead of 150 or 1500?

4 Biological Modeling

Are the weight of a mammal and its heart rate related? Use the (nonlinear) model:

 $W = AR^n$

where W is weight, R is heart rate (beats per minute), and A, n are the parameters we need to find.

Homework:

- Download the data from the class website.
- Linearize the model.
- Find the parameters giving the line of best fit, and comment on the results. Plot the result (as the line and also as $W = AR^n$

Turn in a plot of the linear relationship, together with the values of