A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

Examples:

$$
4 x_{1}+5 x_{2}+2=x_{1}
$$

A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

Examples:

$$
4 x_{1}+5 x_{2}+2=x_{1} \quad \Rightarrow
$$

A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

Examples:

$$
4 x_{1}+5 x_{2}+2=x_{1} \quad \Rightarrow \quad 3 x_{1}+5 x_{2}=-2
$$

"Not an example":

$$
4 x_{1}+6 x_{2}=x_{1} x_{2}
$$

A linear equation:

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

Examples:

$$
4 x_{1}+5 x_{2}+2=x_{1} \quad \Rightarrow \quad 3 x_{1}+5 x_{2}=-2
$$

"Not an example":

$$
4 x_{1}+6 x_{2}=x_{1} x_{2} \quad x_{2}=2 \sqrt{x_{2}}-7
$$

A system of linear equations:

A system of linear equations: A collection of one or more linear equations involving the same set of variables.

A solution to a system

A system of linear equations: A collection of one or more linear equations involving the same set of variables.

A solution to a system is a list of numbers that makes each equation in the system true when they are substituted for $x_{1}, x_{2}, \ldots, x_{n}$.

A system of linear equations: A collection of one or more linear equations involving the same set of variables.

A solution to a system is a list of numbers that makes each equation in the system true when they are substituted for $x_{1}, x_{2}, \ldots, x_{n}$.

Example: Verify that $(-1,1)$ is a solution to the system below:

$$
\begin{aligned}
x_{1}+2 x_{2} & =1 \\
-x_{1}+x_{2} & =2
\end{aligned}
$$

A system of linear equations: A collection of one or more linear equations involving the same set of variables.

A solution to a system is a list of numbers that makes each equation in the system true when they are substituted for $x_{1}, x_{2}, \ldots, x_{n}$.

Example: Verify that $(-1,1)$ is a solution to the system below:

$$
\begin{array}{rrr}
x_{1}+2 x_{2} & =1 & -1+2
\end{array}=1
$$

Consider Systems of Two Variables

$$
\begin{aligned}
x_{1}+x_{2} & =10 \\
-x_{1}+x_{2} & =0
\end{aligned}
$$

$$
2 x_{1}-4 x_{2}=8
$$

$$
\begin{aligned}
x_{1}+x_{2}= & 3 \\
-2 x_{1}-2 x_{2}= & -6
\end{aligned}
$$

Consider Systems of Three Variables

Solutions to Linear Systems

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

- A unique solution

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

- A unique solution
- An infinite number of solutions

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

- A unique solution
- An infinite number of solutions
- No solution

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

- A unique solution
- An infinite number of solutions
- No solution

In particular, we cannot have, say two or three solutions only.

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

- A unique solution
- An infinite number of solutions
- No solution

In particular, we cannot have, say two or three solutions only.
Later, we'll talk about how we exactly describe the set of infinite solutions...

Solutions to Linear Systems

When solving a linear system, we always get exactly one of the following outcomes:

- A unique solution
- An infinite number of solutions
- No solution

In particular, we cannot have, say two or three solutions only.
Later, we'll talk about how we exactly describe the set of infinite solutions...

For the rest of today, we discuss an algorithm for solving a linear system.

Strategy for Solving a System

Strategy for Solving a System

We replace one system with an equivalent system that is easier to solve.

Strategy for Solving a System

We replace one system with an equivalent system that is easier to solve.
Def: Two systems are equivalent if they have the same solution set.

Example

$$
\begin{aligned}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+3 x_{2} & =3
\end{aligned} \quad \rightarrow \quad x_{1}-2 x_{2}=-1 \quad \rightarrow x_{1}=3
$$

Matrix Notation

Definition: The system to the left is equivalent to the "augmented" matrix to the right:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} \Leftrightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Matrix Notation

Definition: The system to the left is equivalent to the "augmented" matrix to the right:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} \Leftrightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Example: Convert the three systems from the previous example into the equivalent augmented matrices:

$$
\begin{aligned}
x_{1}-2 x_{2} & =-1 & x_{1}-2 x_{2} & =-1 & x_{1} & \\
-x_{1}+3 x_{2} & =3 & x_{2} & =2 & & x_{2}
\end{aligned}=2
$$

Matrix Notation

Definition: The system to the left is equivalent to the "augmented" matrix to the right:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} \Leftrightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Example: Convert the three systems from the previous example into the equivalent augmented matrices:

$$
\begin{array}{rlrlll}
x_{1}-2 x_{2} & =-1 & x_{1}-2 x_{2} & =-1 & x_{1} & \\
-x_{1}+3 x_{2} & =3 & x_{2} & =2 & & x_{2}
\end{array}=2
$$

Matrix Notation

Definition: The system to the left is equivalent to the "augmented" matrix to the right:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} \Leftrightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Example: Convert the three systems from the previous example into the equivalent augmented matrices:

$$
\left.\begin{array}{rlrll}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+3 x_{2} & =3
\end{array} \quad \begin{array}{rr}
x_{1}-2 x_{2} & =-1 \\
x_{2} & =2
\end{array}\right] \begin{array}{lr}
x_{1} & \\
\\
{\left[\begin{array}{rr|r}
1 & -2 & -1 \\
-1 & 3 & 3
\end{array}\right]} & {\left[\begin{array}{rr|r}
1 & -2 & -1 \\
0 & 1 & 2
\end{array}\right]}
\end{array}
$$

Matrix Notation

Definition: The system to the left is equivalent to the "augmented" matrix to the right:

$$
\begin{aligned}
x_{1}-2 x_{2}+x_{3} & =0 \\
2 x_{2}-8 x_{3} & =8 \\
-4 x_{1}+5 x_{2}+9 x_{3} & =-9
\end{aligned} \Leftrightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right]
$$

Example: Convert the three systems from the previous example into the equivalent augmented matrices:

$$
\left.\begin{array}{rlrl}
x_{1}-2 x_{2} & =-1 \\
-x_{1}+3 x_{2} & =3
\end{array} \quad \begin{array}{rr}
x_{1}-2 x_{2} & =-1 \\
x_{2} & =2
\end{array}\right] \begin{array}{rr}
x_{1} & \\
x_{2} & =2 \\
{\left[\begin{array}{rr|r}
1 & -2 & -1 \\
-1 & 3 & 3
\end{array}\right]} & {\left[\begin{array}{rr|r}
1 & -2 & -1 \\
0 & 1 & 2
\end{array}\right]}
\end{array}
$$

Elementary Row Operations

To keep our systems equivalent, we will allow only the following operations on the matrix:

Elementary Row Operations

To keep our systems equivalent, we will allow only the following operations on the matrix:

- (Replacement) Add one row to a multiple of another row. $r_{i}+k r_{j} \rightarrow r_{i}$

Elementary Row Operations

To keep our systems equivalent, we will allow only the following operations on the matrix:

- (Replacement) Add one row to a multiple of another row. $r_{i}+k r_{j} \rightarrow r_{i}$
- (Interchange) Interchange two rows $r_{i} \leftrightarrow r_{j}$

Elementary Row Operations

To keep our systems equivalent, we will allow only the following operations on the matrix:

- (Replacement) Add one row to a multiple of another row. $r_{i}+k r_{j} \rightarrow r_{i}$
- (Interchange) Interchange two rows $r_{i} \leftrightarrow r_{j}$
- (Scaling) Multiply all entries in row by a non-zero scalar. $k r_{i} \rightarrow r_{i}$.

Example

Given the matrices below, what operation was performed?

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \Rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Example

Given the matrices below, what operation was performed?

$$
\begin{gathered}
{\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
-4 & 5 & 9 & -9
\end{array}\right] \Rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right]} \\
R_{3}+4 R_{1} \rightarrow R_{3}
\end{gathered}
$$

Continuing:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

Continuing:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

$(1 / 2) R_{2} \rightarrow R_{2}$. And the next one:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Continuing:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 2 & -8 & 8 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right]
$$

$(1 / 2) R_{2} \rightarrow R_{2}$. And the next one:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & -3 & 13 & -9
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

$R_{3}+3 R_{2} \rightarrow R_{3}$.

And the two row operations to get:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

And the two row operations to get:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

$R_{2}+4 R_{3} \rightarrow R_{2}$ and $R_{1}+(-1) R_{3} \rightarrow R_{1}$. And finally:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll|r}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

In this case, we read off the solution:

And the two row operations to get:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

$R_{2}+4 R_{3} \rightarrow R_{2}$ and $R_{1}+(-1) R_{3} \rightarrow R_{1}$. And finally:

$$
\left[\begin{array}{rrr|r}
1 & -2 & 0 & -3 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll|r}
1 & 0 & 0 & 29 \\
0 & 1 & 0 & 16 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

In this case, we read off the solution:

$$
x_{1}=29, x_{2}=16, x_{3}=3
$$

Two Fundamental Questions: Existence and Uniqueness

- Is a given system consistent (does a solution exist)? (This is "existence")
- If a solution exists, is it unique? (Infinite number, or only one?)

In the last example, it would suffice to have the system in "trangular form":

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Why?

In the last example, it would suffice to have the system in "trangular form":

$$
\left[\begin{array}{rrr|r}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Why?
In the third equation, we set $x_{3}=3$, and substitute that into equations 1 and 2 :

$$
\begin{aligned}
x_{1}-2 x_{2}+(3) & =0 \\
x_{2}-4(3) & =4
\end{aligned}
$$

From which $x_{2}=16$, so that $x_{1}=29$ (this is backsubstitution).

Consistent?

$$
\begin{aligned}
3 x_{2}-6 x_{3} & =8 \\
x_{1}-2 x_{2}+3 x_{3} & =-1 \\
5 x_{1}-7 x_{2}+9 x_{3} & =0
\end{aligned}
$$

To assist you, consider the matrices produced by row ops:

$$
\left[\begin{array}{rrr|r}
0 & 3 & -6 & 8 \\
1 & -2 & 3 & -1 \\
5 & -7 & 9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 3 & -6 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

Consistent?

$$
\begin{aligned}
3 x_{2}-6 x_{3} & =8 \\
x_{1}-2 x_{2}+3 x_{3} & =-1 \\
5 x_{1}-7 x_{2}+9 x_{3} & =0
\end{aligned}
$$

To assist you, consider the matrices produced by row ops:

$$
\left[\begin{array}{rrr|r}
0 & 3 & -6 & 8 \\
1 & -2 & 3 & -1 \\
5 & -7 & 9 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 3 & -6 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -2 & 3 & -1 \\
0 & 3 & -6 & 8 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

The last equation is never true: $0=-3$, so INCONSISTENT.

Example

For what value(s) of h will the following be consistent?

$$
\begin{aligned}
3 x_{1}-9 x_{2} & =4 \\
-2 x_{1}+6 x_{2} & =h
\end{aligned}
$$

Example

For what value(s) of h will the following be consistent?

$$
\begin{gathered}
3 x_{1}-9 x_{2}
\end{gathered}=4, \begin{array}{rr}
-2 x_{1}+6 x_{2} & =h \\
{\left[\begin{array}{rr|r}
3 & -9 & 4 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 4 / 3 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 4 / 3 \\
0 & 0 & h+8 / 3
\end{array}\right]}
\end{array}
$$

Example

For what value(s) of h will the following be consistent?

$$
\begin{aligned}
3 x_{1}-9 x_{2} & =4 \\
-2 x_{1}+6 x_{2} & =h
\end{aligned}
$$

$$
\left[\begin{array}{rr|r}
3 & -9 & 4 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 4 / 3 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 4 / 3 \\
0 & 0 & h+8 / 3
\end{array}\right]
$$

If $h+8 / 3=0$, the system is CONSISTENT (infinite number of solutions).

Example

For what value(s) of h will the following be consistent?

$$
\begin{aligned}
3 x_{1}-9 x_{2} & =4 \\
-2 x_{1}+6 x_{2} & =h
\end{aligned}
$$

$$
\left[\begin{array}{rr|r}
3 & -9 & 4 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 4 / 3 \\
-2 & 6 & h
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -3 & 4 / 3 \\
0 & 0 & h+8 / 3
\end{array}\right]
$$

If $h+8 / 3=0$, the system is CONSISTENT (infinite number of solutions).
If $h+8 / 3 \neq 0$, the system is INCONSISTENT.

