
6.5: Least Squares Problems

When we set up the equation:
Ax = b

we know there are three general outcomes: (1) A unique solution (found by inverting the
matrix A), (2) An infinite number of solutions (found by reducing the augmented matrix
[A|b], and (3) No (exact) solution.

Today, we focus on the last issue.

Example

This is a common problem: Given points (x1, t1), (x2, t2), (x3, t3), up to (xp, tp), (t stands
for “target”) find a line:

y = mx + b

through the data.

The problem is, there is no line that goes through all the data exactly- If there were, we
would only need two points, and solve for m, b directly. By setting up the matrix equation
that we would get by using the data:

mx1 + b = t1
mx2 + b = t2
mx3 + b = t3

...
mxp + b = tp

⇒


x1 1
x2 1
x3 1

...
...

xp 1


[
m
b

]
=


t1
t2
t3
...
tp

 ⇒ Ac = t

To interpret this, we have the matrix equation with no (exact) solution. To solve this
equation, and therefore to find the line of “best” fit, we will define an error function, and
we will then find the best approximate solution.

The Error Function

If the matrix equation Ax = b does not have a solution, then in terms of our four fundamental
subspaces b is not contained in the column space.

We seek to find b̂ ∈ Col(A) that is the closest to b:

E(x) = ‖b− b̂‖ = ‖b− Ax‖

and so we wish to find x that minimizes the error. The error is commonly referred to as the
“least squared error”, and so this problem is called the general least squares problem.
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Solving the Line of Best Fit Using Calculus

Going back to the line of best fit problem, our error function is given by:

E(m, b) = ‖t− Ac‖2 =

p∑
i=1

(ti −mxi − b)2 =

(t1 − (mx1 + b))2 + (t2 − (mx2 + b))2 + (t3 − (mx3 + b))2 + · · ·+ (tp − (mxp + b))2

This problem has one minimum (it is quadratic), and that point must occur at a critical
point. The partial derivatives are nice and continuous, so the extreme point must be at the
zeros of the partial derivatives.

∂E

∂m
= 2(t1−mx1−b)(−x1)+2(t2−mx2−b)(−x2)+2(t3−mx3−b)(−x3)+· · ·+2(tp−mxp−b)(−xp)

or more compactly:

∂E

∂m
=

p∑
i=1

2(ti −mxi − b)(−xi) = 2

p∑
i=1

(−xiti + mx2
i + bxi)

Similarly, you can show that

∂E

∂b
=

p∑
i=1

2(ti −mxi − b)(−1) = 2

p∑
i=1

(−ti + mxi + b)

Set each of these to zero:

m
∑

x2
i +b

∑
xi =

∑
xiti

m
∑

xi +bp =
∑

ti
⇒

[ ∑
x2
i

∑
xi∑

xi p

] [
m
b

]
=

[ ∑
xiti∑
ti

]
This is easily solved using the 2× 2 inverse or by Cramer’s Rule.

Solving the problem using the Fundamental Spaces

Given Ax = b has no solution, then the point in the column space closest to b will be defined
as b̂, and the point x̂ that gives us b̂ is the least squares solution.

By the Best Approximation Theorem, we know that b̂ is the orthogonal projection of b
into the column space, so

b− b̂ ∈ Null(AT )

(Draw a picture). In other words,

AT (b− b̂) = ~0 ⇒ ATb− AT b̂ = ~0

Since Ax̂ = b̂, we have: The least squares solution solves the normal equations:
(Which is Theorem 13)

ATAx = ATb
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Connecting the two solutions

In the special case of the line of best fit, let’s see what the normal equations will give us.

[
x1 x2 . . . xp

1 1 . . . 1

]


x1 1
x2 1
x3 1

...
...

xp 1


[
m
b

]
=

[
x1 x2 . . . xp

1 1 . . . 1

]


t1
t2
t3
...
tp


[ ∑

x2
i

∑
xi∑

xi p

] [
m
b

]
=

[ ∑
xiti∑
ti

]
This is the exact same expression as before.

Continuing with the Normal Eqns

Continuing with the normal equations, we saw that the solution to the normal equations will
give us the least square solution:

ATAx = ATb

We might ask: When is this expression uniquely solvable?
That happens when ATA is invertible, or when A is “full rank”. In that case, the least

squares solution is given by:
x̂ = (ATA)−1ATb

(This is Theorem 14).

Special Case: A has orthogonal columns

Given Ax = b where the columns of A are orthogonal, then we can actually project b into
the column space of A. Before we do that, recall that

Ax = x1a1 + x2a2 + · · ·+ xnan

And the projection is:

b̂ =
b · a1

a1 · a1

a1 +
b · a2

a2 · a2

a2 + · · ·+ b · an

an · an

an

Comparing these two, we see that the projection gives us the solution.

x1 =
b · a1

a1 · a1

, etc
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A (numerically) better solution

Finally, in the extra special case that A = QR, then x̂ = R−1QTb. This technique is
recommended for generating computer solutions. It is generally more stable
than inverting ATA. In this case, we note that:

Ax̂ = AR−1QTb = QRR−1QTb = QQTb

Numerical Examples

1. (Exercise 4 in text) Find the least squares solution to Ax = b by using the normal
equations. Also determine the error in the solution, and find the projection of b into
the column space of A.

A =

 1 3
1 −1
1 1

 b =

 5
1
0


SOLUTION: We note that the columns of A are not orthogonal, but they are linearly
independent, so we can use the normal equations.

ATAx = b ⇒
[

3 3
3 11

]
x =

[
6

14

]
⇒ x =

1

24

[
11 −3
−3 3

] [
6

14

]
=

[
1
1

]
Further,

b̂ = Ax =

 4
0
2


and the error (the distance from the column space of A to b) is:√

(4− 5)2 + (0− 1)2 + (2− 0)2 =
√

6

2. (Exercise 6) This one is interesting because the columns of A are not linearly indepen-
dent, but we can still solve the normal equations.

Find all least squares solutions of the equation Ax = b. By the way, we know that b
is not contained in the column space of A. If there are an infinite number of solutions,
what does that say about which of the fundamental subspaces x̂ lies?

A =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 b =


7
2
3
6
5
4
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(We will form an augmented matrix: [ATA |AT b] 6 3 3 27
3 3 0 12
3 0 3 15

 ∼
 1 0 1 5

3 3 0 12
6 3 3 27

 ∼
 1 0 1 5

0 3 −3 −3
0 3 −3 −3

 ∼
 1 0 1 5

0 1 −1 −1
0 0 0 0


From this, we get the least squares solution:

x1 = 5 −x3

x2 = −1 +x3

x3 = x3

=

 5
−1

0

+ x3

 −1
1
1


As usual, note that the first vector is the particular solution and the second vector is
in the null space of A. Therefore, when we compute b̂, we can ignore the second.

Here we compute the projection of b and the error associated with our solution set.

b̂ = A

 5
−1

0

 =


4
4
4
5
5
5

 ‖b− b̂‖ =
√

16 = 4

3. (Exercise 10) This one is interesting because the columns of A are orthogonal.

A =

 1 2
−1 4

1 2

 b =

 3
−1

5


The solution is from the scalar projection of b into the columns of A:

x1 =
b · a1

a1 · a1

=
9

3
= 3

x2 =
b · a2

a2 · a2

=
12

24
=

1

2

4. (Exercise 25) Describe all least squares solution of the system

x + y = 2
x + y = 4

SOLUTION: Geometrically, it should be the line x + y = 3. It is! The matrix
[ATA |ATb] is simply [

2 2 6
2 2 6

]
∼
[

1 1 3
0 0 0

]
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5. Exercise 19 shows that the null spaces of ATA and A are the same. How does that
prove the following:

rank(ATA) = rank(A)

SOLUTION: Let A be m×n with rank k. We note that ATA is n×n so the null space
of it and the null space of A are both in IRn.

If the null spaces are the same, then the dimensions of the null spaces are the same.

If the dimensions are the same, so are the dimensions of the row space of A and the
row space of ATA.

The dimension of the row space is equal to the dimension of the column space, so the
dimension of the column space of A is equal to the dimension of the column space of
ATA (the dimensions are equal, even though they are in different vector spaces).

The rank is the dimension of the column space, so the ranks are equal as well
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