6.7: Inner Product Spaces

All of the geo. props we discussed for \mathbb{R}^{n} (length, distance, orthogonality), came to us from the dot product. Is there something like the dot product, but for other types of vector spaces? Yes- It's called an inner product.

Definition: Let V be a vector space, and let u, v, w be vectors in V and c, d be any scalars. Then an inner product is a function from $V \times V$ to \mathbb{R} and denoted by:

$$
\langle u, v\rangle
$$

with the following properties:

- $\langle u, v\rangle=\langle v, u\rangle$
- $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$
- $\langle c u, v\rangle=c\langle u, v\rangle$
- $\langle u, u\rangle \geq 0$, and $\langle u, u\rangle=0$ iff $u=0$.

Example 1

Let u, v be vectors in \mathbb{R}^{2}, and define

$$
\langle u, v\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}
$$

(We might think of this as a "weighted dot product"). Show that this is an inner product.

Example 2

Let $t_{0}, t_{1}, \ldots, t_{n}$ be $n+1$ distinct numbers. For vectors $p, q \in P_{n}$, define the inner product by first evaluating p, q at the $n+1$ points (so that we have two vectors in \mathbb{R}^{n+1}. Then define:

$$
\langle p, q\rangle=\vec{p} \cdot \vec{q}
$$

Then items 1-3 are straightforward. What about (4)? Well, first note that

$$
\langle p, p\rangle=\left(p\left(t_{0}\right)\right)^{2}+\left(p\left(t_{1}\right)\right)^{2}+\ldots+\left(p\left(t_{n}\right)\right)^{2} \geq 0
$$

Note that if $\langle p, p\rangle=0$, then $p\left(t_{i}\right)=0$ for $i=0,1, \ldots, n+1$. A polynomial of degree $\leq n$ that is zero at $n+1$ points must be the zero function.

Example 3: $C[a, b]$
Let $f, g \in C[a, b]$. Show that the following function defines an inner product:

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t
$$

Items 1-3 again are easy to show. What about (4)? In particular, think about this- If the integral of $f^{2}(t)$ is zero, does that mean that $f(t)=0$? (Yes, as long as f is continuous)

Geometry of an Inner Product Space

Once a vector space is given an inner product, then we can define length, distance and angle just as before:

$$
\begin{gathered}
\|f\|=\sqrt{\langle f, f\rangle} \\
\operatorname{dist}(f, g)=\|f-g\|
\end{gathered}
$$

And finally, we define θ, the angle between f and g as the angle satisfying:

$$
\cos (\theta)=\frac{\langle f, g\rangle}{\|f\|\|g\|}
$$

Therefore, we also say that f, g are orthogonal (with respect to the given inner product) if $\langle f, g\rangle=0$.

Two Inequalities

There are also two important inequalities that inner products must satisfy:

- The Cauchy-Schwartz inequality:

$$
|\langle u, v\rangle| \leq\|u\|\|v\|
$$

(You can see how this might stem directly from our definition of θ)

- The triangle inequality:

$$
\|f+g\|^{2} \leq\|f\|^{2}+\|g\|^{2}
$$

For a proof, recall that

$$
\langle f+g, f+g\rangle=\langle f, f\rangle+2\langle f, g\rangle+\langle g, g\rangle
$$

Then use the Cauchy-Schwartz inequality on the middle term.

Applications

Now we can perform projections. For example, given that the inner product on $C[0,1]=\int_{0}^{1} f(t) g(t) d t$, how would we project $f(t)=t$ onto $g(t)=1+t^{2}$?

$$
\operatorname{Proj}_{g(t)}(f(t))=\left(\frac{\langle f, g\rangle}{\langle g, g\rangle}\right) g(t)
$$

so we would need to compute:

$$
\langle f, g\rangle=\int_{0}^{1} t\left(1+t^{2}\right) d t=\frac{3}{4} \quad\langle g, g\rangle=\int_{0}^{1}\left(1+t^{2}\right)^{2} d t=\frac{28}{15}
$$

so that simplifying we get

$$
\frac{3 / 4}{28 / 15}\left(1+t^{2}\right)=\frac{45}{112}\left(1+t^{2}\right)
$$

A Basis for Functions

We have defined that an analytic function is any function that is equal to its Taylor series (based at x_{0}). This means that the set of functions

$$
\left\{1,\left(x-x_{0}\right),\left(x-x_{0}\right)^{2},\left(x-x_{0}\right)^{3}, \cdots\right\}
$$

will form a basis for the space of such functions. Similarly, the set of monomials forms a basis for $C[-1,1]$, and if we further set the inner product as:

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

then we can construct a set of orthogonal polynomials. So let's do that using Gram-Schmidt (without normalization):

$$
P_{0}(x)=1
$$

Then

$$
P_{1}(x)=x-\operatorname{Proj}_{1}(x)=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} 1=x-0=x
$$

Now,

$$
P_{2}(x)=x^{2}-\operatorname{Proj}_{x}\left(x^{2}\right)-\operatorname{Proj}_{1}\left(x^{2}\right)=x^{2}-\frac{\left\langle x^{2}, x\right\rangle}{\langle x, x\rangle} x-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle} 1
$$

where

$$
\langle 1,1\rangle=2 \quad\left\langle x, x^{2}\right\rangle=0 \quad\left\langle x^{2}, 1\right\rangle=\frac{2}{3}
$$

so that

$$
P_{2}(x)=x^{2}-\frac{1}{3}
$$

and so on...
The set of these polynomials is called the Legendre polynomials.
As a side note, the Laguerre polynomials are a set of polynomials that are orthogonal on $[0, \infty)$ with the inner product

$$
\langle f, g\rangle=\int_{0}^{\infty} f(t) g(t) \mathrm{e}^{-t} d t
$$

