1.3.24: True or False (and short reason)

- When \mathbf{u}, \mathbf{v} are non-zero vectors, $\mathrm{Span}(\mathbf{u}, \mathbf{v})$ contains only the line through \mathbf{u} and the origin, and the line through \mathbf{v} and the origin.
- ② Any list of 5 real numbers is a vector in \mathbb{R}^5 .
- **3** Asking whether the linear system corresponding to an augmented matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ | \ \mathbf{b}]$ has a solution amounts to asking whether \mathbf{b} is in the $\mathrm{Span}(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$.
- **1** The vector \mathbf{v} results when a vector $\mathbf{u} \mathbf{v}$ is added to \mathbf{v} .
- **5** The weights c_1, \ldots, c_p in a linear combination $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ cannot all be zero.

1.4.24: True or False (and short reason)

- **1** Every matrix equation $A\mathbf{x} = \mathbf{b}$ corresponds to a vector equation with the same solution set.
- ② If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{b} is in the set spanned by the columns of A.
- 3 Any linear combination of vectors can always be written in the form $A\mathbf{x}$ for a suitable matrix A and vector \mathbf{b} .
- **1** If the coefficient matrix A has a pivot position in every row, then the equation $A\mathbf{x} = \mathbf{b}$ is inconsistent.
- **1** If the columns of an $m \times n$ matrix span \mathbb{R}^m , then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in \mathbb{R}^m$.