Example Questions, Exam 3, Math 240

1. Assume that A and B are row equivalent, where:

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 & 7 \\ -2 & -3 & 1 & -1 & -5 \\ -3 & -4 & 0 & -2 & -3 \\ 3 & 6 & -6 & 5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & -3 & 0 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) State which vector space contains each of the four subspaces, and state the dimension of each of the four subspaces:
- (b) Find a basis for Col(A):
- (c) Find a basis for Row(A):
- (d) Find a basis for Null(A):
- 2. Suppose that T is a one-to-one linear transformation between vector spaces V and W. Show that, if a set of images, $\{T(\mathbf{v}_1, \dots, T(\mathbf{v}_p))\}$ are linearly dependent, then so is the set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$
- 3. In class we said that \mathbb{P}_2 is **isomorphic** to \mathbb{R}^3 . (i) What is an isomorphism in general? (ii) What is the isomorphism in this particular case?
- 4. The set $\mathcal{B} = \{1 + t^2, t + t^2, 1 + 2t + t^2\}$ is a basis for \mathbf{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 1 + 4t + 7t^2$ relative to \mathcal{B} .
- 5. Let A be an $n \times n$ matrix. Write statements from the Invertible Matrix Theorem that are each equivalent to the statement "A is invertible". Use the following concepts, one in each statement: (a) Null(A) (b) Basis (c) Rank (d) det(A) (e) Eigenvalue
- 6. Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution, with two free variables. Is it possible to change some constants on the equation's right sides to make the new system inconsistent? Explain.
- 7. Is is possible for a nonhomogeneous system of seven equations in six unknowns to have a unique solution for some right hand side of constants? Is it possible for such a system to have a unique solution for every right hand side? Explain.
- 8. Short Answer:
 - (a) T/F and give a short reason: If there is a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ that spans V, then the $\dim(V) \leq p$.
 - (b) Write the complex number in a + ib form: $\frac{1-3i}{2+i}$.
 - (c) Write the complex number in polar form, $re^{i\theta}$: -1 + i
 - (d) If A is similar to B, then prove that A^2 is similar to B^2 .
- 9. Show that $\mathcal{B} = \{1, 2t, -2 + 4t^2\}$ is a basis for P_2 . Be explicit about your reasoning!
- 10. Assume the mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by the following is linear.

$$T(a_0 + a_1t + a_2t^2) = 3a_0 + (5a_0 - 2a_1)t + (4a_1 + a_2)t^2$$

Find the matrix representation of T relative to the standard basis $\mathcal{B} = \{1, t, t^2\}$

- 11. If each row of the matrix A sums to the same number r, and A is $n \times n$, then what must one eigenvalue of A be, and what eigenvector? (Hint: Is there a vector \mathbf{v} so that $A\mathbf{v}$ is a vector of row sums?)
- 12. Show that the eigenvalues of A and A^T are the same.
- 13. Find the eigenvalues and bases for the eigenspaces for each matrix below. If the matrix is diagonalizable in either PDP^{-1} or PCP^{-1} form, given P and D or C. Otherwise, state that as well.

1

(a)
$$A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$$
. (b) $A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \end{bmatrix}$. (c) $A = \begin{bmatrix} -3 & 1 \\ -1 & -1 \end{bmatrix}$. (d) $A = \begin{bmatrix} 2 & 2 \\ -4 & 6 \end{bmatrix}$.

- 14. If A is similar to B, show that they have the same eigenvalues. Do they also have the same eigenvectors?
- 15. Prove that, if $n \times n$ matrix A is not invertible, then $\lambda = 0$ is an eigenvalue.
- 16. Prove that the eigenvalues of a triangular matrix are the entries on its main diagonal.
- 17. Let \mathcal{B}, \mathcal{C} be two sets of p vectors that represent bases for vector space V. Explain how we find $P_{\mathcal{C}\leftarrow\mathcal{B}}$. Hint: You might start with a vector $\mathbf{x} \in V$ and expand it relative to \mathcal{B} .
- 18. True or False? If the statement is false and you can provide a counterexample to demonstrate this, then do so. If the statement is false and be can slightly modified so as to make it true then indicate how this may be done.
 - (a) If \mathbf{v}_1 and \mathbf{v}_2 are linearly independent eigenvectors, then they correspond to distinct eigenvalues.
 - (b) If A is invertible, then A is diagonalizable.
 - (c) A is diagonalizable if $A = PDP^{-1}$ for some matrix D and invertible matrix P.
 - (d) A is diagonalizable if A has n eigenvalues, counting multiplicities.
 - (e) If A, B are similar, they have the same rank.
 - (f) If A, B are row equivalent, then they have the same row space.
 - (g) If \mathbf{u}, \mathbf{v} are eigenvectors of A, so is $\mathbf{u} + \mathbf{v}$.
 - (h) The rank of a matrix is equal to the number of nonzero rows.
- 19. Show that the rank of AB is less than or equal to the rank of A. Hint: Think about the columns of AB.
- 20. Suppose $A = PDP^{-1}$ with a suitable 2×2 matrix P and $D = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}$.
 - (a) If $B = 3I 2A + A^2$, show that B is diagonalizable by finding an appropriate factorization of B.
 - (b) From your previous answer, if λ is an eigenvalue of A, then what would an eigenvalue of $A^2 + bA + cI$ be?
- 21. Suppose that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\}$ are two sets of bases for the same vector space V. How do we find the matrix that represents a change of coordinates from \mathcal{B} to \mathcal{C} ? (Hint: Start with a vector in V written in terms of \mathcal{B} .)
- 22. In \mathbb{P}_2 , let $\mathcal{B} = \{1 3t^2, 2 + t 5t^2, 1 + 2t\}$. Let $\mathcal{C} = \{1, t, t^2\}$.
 - (a) Find the change of coordinates matrix from \mathcal{B} to \mathcal{C} .
 - (b) Find the coordinates of t^2 with respect to the basis \mathcal{B} .
- 23. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 . Let $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\}$ be a basis for some vector space V. Let $T : \mathbb{R}^3 \to V$ be a linear transformation:

$$T(x_1, x_2, x_3) = (2x_3 - x_2)\mathbf{c}_1 - (2x_2)\mathbf{c}_2 + (x_1 + 3x_3)\mathbf{c}_3$$

Find the matrix for T relative to \mathcal{E} and \mathcal{C} .

24. Find $T(a_0 + a_1t + a_2t^2)$ if T is the linear transformation from \mathbb{P}_2 to \mathbb{P}_2 whose matrix relative to $\mathcal{B} = \{1, t, t^2\}$ is given by:

$$[T]_B = \left[\begin{array}{rrr} 3 & 4 & 0 \\ 0 & 5 & -1 \\ 1 & -2 & 7 \end{array} \right]$$

25. Suppose in Matlab, I have the matrix A below, and the program gave the following matrices for V and D. Find P, C so that $A = PCP^{-1}$.

$$A = \left[\begin{array}{rrrr} 3 & 2 & 3 & 1 \\ 1 & 3 & 3 & 3 \\ 3 & 1 & 3 & 3 \\ 3 & 2 & 2 & 3 \end{array} \right]$$

26. If we think about a block form of a matrix, if we have

$$G = \left[\begin{array}{cc} A & X \\ 0 & B \end{array} \right]$$

where A, B are square (not necessarily the same size), then $\det(G) = (\det A)(\det(B))$. Use this to help find the eigenvalues of the matrices below:

$$G_1 = \begin{bmatrix} 3 & -2 & 8 \\ 0 & 3 & -2 \\ 0 & 2 & 3 \end{bmatrix} \qquad G_2 = \begin{bmatrix} 1 & 5 & -6 & -7 \\ 2 & 4 & 5 & 2 \\ 0 & 0 & -7 & -4 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$