Solutions to the Review 4 Exercises

1. Find the least squares solution to $A\mathbf{x} = \mathbf{b}$, given A and **b** below. Note that the columns of A are orthogonal, and use that fact.

$$A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \\ 1 & -2 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

SOLUTION: Since the columns of A are orthogonal, we can compute the $\hat{\mathbf{b}}$ directly.

$$\hat{\mathbf{b}} = \frac{\mathbf{b}^T \mathbf{a}_1}{\mathbf{a}_1^T \mathbf{a}_1} \mathbf{a}_1 + \frac{\mathbf{b}^T \mathbf{a}_2}{\mathbf{a}_2^T \mathbf{a}_2} \mathbf{a}_2 = \frac{7}{9} \mathbf{a}_1 + \frac{1}{9} \mathbf{a}_2 = A\hat{\mathbf{x}}$$

so we can read $\hat{\mathbf{x}}$ off: $[7/9, 1/9]^T$. (See page 414 for another example).

2. Find the line that best fits the data: (-1,-1), (0,2), (1,4), (2,5). Do this by first finding a matrix equation that you will then find the least squares solution to (by using the normal equations).

SOLUTION: The model equation is $y = \beta_0 + \beta_1 x$, so the matrix equation is:

$$\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Forming the normal equations, we have:

$$A^{T}A\vec{\beta} = A^{T}\mathbf{y} \quad \Rightarrow \quad \begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \begin{bmatrix} 10 \\ 15 \end{bmatrix}$$
$$\begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 6 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} 10 \\ 15 \end{bmatrix} = \begin{bmatrix} 3/2 \\ 2 \end{bmatrix}$$

3. Show that if $\mathbf{x} \in \text{Null}(A)$, then $\mathbf{x} \in \text{Null}(A^T A)$.

SOLUTION: If $\mathbf{x} \in \text{Null}(A)$, then $A\mathbf{x} = \mathbf{0}$. Multiplying both sides by A^T , we see that $A^T A \mathbf{x} = \mathbf{0}$, so that $\mathbf{x} \in \text{Null}(A^T A)$.

Show that if $A^T A \mathbf{x} = 0$, then $||A\mathbf{x}|| = ?$.

SOLUTION: Looking at the expression to the left, it is similar to what we have if we compute $||A\mathbf{x}||$. In fact:

$$||A\mathbf{x}||^2 = (A\mathbf{x}) \cdot (A\mathbf{x}) = (A\mathbf{x})^T (A\mathbf{x}) = \mathbf{x}^T A^T A\mathbf{x}$$

Now, if $A^T A \mathbf{x} = \mathbf{0}$ then $\mathbf{x}^T A^T A \mathbf{x} = 0$ so that $||A\mathbf{x}||^2 = 0$.

Use the above to show that, if $\mathbf{x} \in \text{Null}(A^T A)$, then $\mathbf{x} \in \text{Null}(A)$.

SOLUTION: In the previous problem, we showed that if $\mathbf{x} \in \text{Null}(A^T A)$, then $||A\mathbf{x}|| = 0$. This implies that $A\mathbf{x} = \mathbf{0}$, or equivalently, that $\mathbf{x} \in \text{Null}(A)$.

Altogether, this problem is showing that the null spaces of A and $A^{T}A$ are the same!

4. Using the last problem, what can we conclude about the rank of A versus the rank of A^TA ?

SOLUTION: If A is $m \times n$, then the null spaces of A and A^TA are the same subspaces of \mathbb{R}^n - thus they also have the same dimension. Therefore, the dimension of $\mathrm{Row}(A)$ and $\mathrm{Row}(A^TA)$ are the same, and therefore, the dimension of $\mathrm{Col}(A)$ and $\mathrm{Col}(A^TA)$ are the same. Therefore, A and A^TA have the same rank.

5. Suppose I have a model equation: $y = \beta_0 + \beta_1 \sin(v) + \beta_2 \ln(w)$.

Given the following data, set up the matrix equation from which we could determine a least squares solution for the β 's:

Side Remark: In Matlab, you could solve this:

6. Given vectors \mathbf{u} , \mathbf{v} in the vector space \mathbb{R}^n with the usual dot product as inner product, show that the Pythagorean Theorem still holds. That is, if \mathbf{u} and \mathbf{v} are orthogonal to each other, then:

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

SOLUTION: Write out the left side in terms of the dot product, and expand.

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v}$$

Since $\mathbf{u} \cdot \mathbf{v} = 0$, this expression reduces to

$$\mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

7. True or False, and explain: For every non-zero vector $\mathbf{v} \in \mathbb{R}^n$, the matrix $\mathbf{v}\mathbf{v}^T$ is called a projection matrix.

SOLUTION: False, unless \mathbf{v} is unit length. Then

$$\operatorname{Proj}_{\mathbf{v}}(\mathbf{x}) = \mathbf{v}\left(\frac{\mathbf{v}^{T}\mathbf{x}}{\mathbf{v}^{T}\mathbf{v}}\right) = (\mathbf{v}\mathbf{v}^{T})\mathbf{x}$$

The last equality holds if $\|\mathbf{v}\| = 1$.

8. Let A be a 6×4 matrix with orthonormal columns. Make appropriate calculations to show that $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for each $\mathbf{x}, \mathbf{y} \in \mathbb{R}^4$.

SOLUTION:

$$A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x}^T A^T A\mathbf{y}$$

If A has o.n. cols, then A^TA is the 4×4 identity matrix.

$$\mathbf{x}^T A^T A \mathbf{y} = \mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$

9. Let $\mathbf{x} = \begin{bmatrix} 0 \\ 6 \\ 4 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$, and let $W = \operatorname{span}(\mathbf{u}, \mathbf{v})$. Decompose \mathbf{x}

into a sum of vectors- one in W, and one in W^{\perp} .

SOLUTION: This is the computational version of the orthogonal decomposition theorem-You'll note that \mathbf{u}, \mathbf{v} are orthogonal vectors! We take

$$\mathbf{x} = \hat{\mathbf{x}} + \mathbf{z}$$

where $\hat{\mathbf{x}} \in W$ (the orthogonal projection) and $\mathbf{z} = \mathbf{x} - \hat{\mathbf{x}}$, which is in W^{\perp} .

$$\hat{\mathbf{x}} = \frac{0 - 6 + 4}{2 + 1 + 1}\mathbf{u} + \frac{0 + 12 + 16}{1 + 4 + 16}\mathbf{v} = \begin{bmatrix} -2\\3\\5 \end{bmatrix}, \qquad \mathbf{z} = \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$$

As a quick double check, look to see if your two vectors are orthogonal!

- 10. Suppose an experiment produces (x, y) data: (2, 5), (3, 6), (4, 8), (5, 10), and a scientist wants to model that data with an equation of the form $y = \beta_1 x + \beta_2 x^2 + \beta_3 e^{-x}$. Write the design matrix, the unknown parameter vector and the observation vector for this problem (with the entries filled in). Do NOT solve for the unknown parameters.
- 11. The given set of vectors is a basis for subspace W. Use the Gram-Schmidt process to produce an orthogonal basis for W:

$$\begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} 3 \\ 3/2 \\ 3/2 \end{bmatrix}$$

3

(Its OK if you do not normalize them since we're doing these by hand.)

12. In the following, let $W = \text{span}(\mathbf{v}_1, \mathbf{v}_2)$, and find the vector in W that is closest to \mathbf{z} .

$$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$

SOLUTION: We should find that projecting \mathbf{z} into W yields the following vector, which represents the vector in W closest to \mathbf{z} .

$$\hat{\mathbf{z}} = \frac{2}{3}\mathbf{v}_1 - \frac{7}{3}\mathbf{v}_2 = \begin{bmatrix} -1\\ -3\\ -2\\ 3 \end{bmatrix}$$

It wasn't asked, but the distance between \mathbf{z} and the plane that is W is $\|\mathbf{z} - \hat{\mathbf{z}}\| = \sqrt{4^2 + 4^2 + 4^2} = \sqrt{48}$