Math 240, Second Exam REVIEW QUESTIONS

- 1. Short Answer:
 - (a) Finish the definition: The set of vectors $\{v_1, \ldots, v_k\}$ spans set V if:
 - (b) Finish the definition: The set of vectors $\{v_1, \ldots, v_k\}$ for a **basis** for vector space V if:
 - (c) Finish the definition: The **rank** of a matrix is:
 - (d) How was the matrix-matrix product AB defined?
 - (e) Finish the definition: The n × n matrix A is invertible if: (Note that this is the definition, not something equivalent to the definition).
 - (f) If A is an $m \times n$ matrix, the column space of A is a subspace of $\mathbb{R}^{?}$, and it is defined as:
 - (g) If A is an $m \times n$ matrix, the null space of A is a subspace of $\mathbb{R}^{?}$ and it is defined as:
 - (h) Finish the definition: Subset H in vector space V is a **subspace** if:
 - (i) Find the inverse of $\begin{bmatrix} 1 & 2\\ 5 & 12 \end{bmatrix}$
- 2. Find the inverse of the matrix A below:

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 4 & 2 & -1 \\ -2 & -1 & 1 \end{bmatrix}$$

3. Suppose A, B and X are $n \times n$ matrices, with A, X, and A - AX invertible, and suppose

$$(A - AX)^{-1} = X^{-1}B$$

First, explain why B is invertible, then solve the equation for X. If you need to invert a matrix, explain why it is invertible.

4. Show that, if AB is invertible, then so is A (assume A, B are $n \times n$).

5. Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, B = \begin{bmatrix} a+2g & b+2h & c+2i \\ d+3g & e+3h & f+3i \\ g & h & i \end{bmatrix}, \text{ and } C = \begin{bmatrix} g & h & i \\ 2d & 2e & 2f \\ a & b & c \end{bmatrix}$$
If det(A) = 5, find det(B), det(C), det(BC).

6. Assume that A and B are row equivalent, where:

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 & 7 \\ -2 & -3 & 1 & -1 & -5 \\ -3 & -4 & 0 & -2 & -3 \\ 3 & 6 & -6 & 5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & -3 & 0 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) State which vector space contains each of the four subspaces, and state the dimension of each of the four subspaces:
- (b) Find a basis for $\operatorname{Col}(A)$:
- (c) Find a basis for Row(A):
- (d) Find a basis for Null(A):

7. Determine if the following sets are subspaces of V. Justify your answers.

•
$$H = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix}, a \ge 0, b \ge 0, c \ge 0 \right\}, \quad V = \mathbb{R}^3$$

• $H = \left\{ \begin{bmatrix} a+3b \\ a-b \\ 2a+b \\ 4a \end{bmatrix}, a, b \text{ in } \mathbb{R} \right\}, \quad V = \mathbb{R}^4$
• $H = \{f: f'(x) = f(x)\}, V = C^1(-\infty, \infty)$

 $(C^1$ is the space of differentiable functions where the derivative is continuous).

- H is the set of vectors in \mathbb{R}^3 whose first entry is the sum of the second and third entries, $V = \mathbb{R}^3$.
- 8. Prove that, if $T: V \mapsto W$ is a linear transformation between vector spaces V and W, then the range of T, which we denote as T(V), is a subspace of W.
- 9. Let H, K be subspaces of vector space V. Define H+K as the set below, and see if H+K is a subspace (check all parts of the definition).

$$H + K = {\mathbf{w} | \mathbf{w} = \mathbf{u} + \mathbf{v}, \text{ for some } \mathbf{u} \in H, \mathbf{v} \in K}$$

- 10. Let A be an n × n matrix. Write statements from the Invertible Matrix Theorem that are each equivalent to the statement "A is invertible". Use the following concepts, one in each statement:
 (a) Null(A)
 (b) Basis
 (c) Rank
 (d) det(A)
- 11. Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.
- 12. Show that $\{1, 2t, -2 + 4t^2\}$ is a basis for P_2 .
- 13. Let $T: V \to W$ be a 1-1 and linear transformation on vector space V to vector space W. Show that if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ are linearly dependent vectors in W, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are linearly dependent vectors in V.
- 14. Use Cramer's Rule to solve the system:

- 15. Let $A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$, and $\mathbf{w} = [2, 1]^T$. Is \mathbf{w} in the column space of A? Is it in the null space of A?
- 16. Prove that the column space is a vector space using a very short proof, then prove it directly by showing the three conditions hold.
- 17. If A, B are 4×4 matrices with det(A) = 2 and det(B) = -3, what is the determinant of the following (if you can compute it): (a) det(AB), (b) det(A⁻¹), (c) det(5B)
 (d) det(3A 2B), (e) det(B^T)
- 18. True or False, and give a short reason:
 - (a) If det(A) = 2 and det(B) = 3, then det(A + B) = 5.
 - (b) Let A be $n \times n$. Then $det(A^T A) \ge 0$.

- (c) If A^3 is the zero matrix, then det(A) = 0.
- (d) \mathbb{R}^2 is a two dimensional subspace of \mathbb{R}^3 .
- (e) Row operations preserve the linear dependence relations among the rows of A.
- (f) The sum of the dimensions of the row space and the null space of A equals the number of rows of A.
- 19. Let the matrix A and its RREF, R_A , be given as below:

$$A = \begin{bmatrix} 1 & 1 & 7 & 2 & 2 \\ 3 & 0 & 9 & 3 & 4 \\ -3 & 1 & -5 & -2 & 3 \\ 2 & 2 & 14 & 4 & 2 \end{bmatrix} \quad R_A = \begin{bmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

so that the columns of A are $\mathbf{a}_1, \cdots, \mathbf{a}_5$.

Similarly, define Z and its RREF, R_Z , as:

$$Z = \begin{bmatrix} 4 & 5 & 3 & 4 \\ 5 & 6 & 5 & -3 \\ 10 & -3 & 9 & -106 \\ 4 & 10 & 2 & 44 \end{bmatrix} \quad R_z = \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Label the columns of Z as $\mathbf{z}_1, \cdots, \mathbf{z}_4$.

- (a) Find the rank of A and a basis for the column space of A (use the notation \mathbf{a}_1 , etc.). Similarly, do the same for Z:
- (b) You'll notice that the rank of A is the rank of Z. Here is a row reduction using some columns of A and Z:

[1	1	2	4	5	3		1	0	0	-1	2	-1
3	0	4	5	6	5		0		0		3	0
-3	1	3	10	-3	9	$ \rightarrow $	0	0	1	2	0	2
2	2	2	4	10	2		0	0	0	0	0	0

Are the subspaces spanned by the columns of A and Z equal?

- (c) Let \mathcal{B} and be the set of basis vectors used for the column spaces of A found in (a). Find the change of coordinates matrix $P_{\mathcal{B}}$ that changes the coordinates from \mathcal{B} to the standard basis, then find the coordinates of \mathbf{z}_1 with respect to \mathcal{B} (Hint: The second part does not rely on the first).
- (d) Find the coordinates of \mathbf{z}_4 using the basis vectors in $\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3$.
- 20. Short Answer:
 - (a) Define the *kernel* of a transformation T:
 - (b) Define the *dimension* of a vector space:
 - (c) We said that \mathbb{P}_n is isomorphic to \mathbb{R}^{n+1} . What is the isomorphism?
 - (d) If C is 4×5 , what is the largest possible rank of C? What is the smallest possible dimension of the null space of C?
 - (e) If A is a 4×7 matrix with rank 3, find the dimensions of the four fundamental subspaces of A.
 - (f) Show that the coordinate mapping (from n-dimensional vector space V to \mathbb{R}^n) is onto.
- 21. Let A be $m \times n$ and let B be $n \times p$. Show that the rank $(AB) \leq \operatorname{rank}(A)$. (Hint: Explain why every vector in the column space of AB is in the column space of A).
- 22. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- (a) If T is one-to-one, what is the dimension of the range of T?
- (b) What is the dimension of the kernel of T if T maps \mathbb{R}^n onto \mathbb{R}^m ? Explain.

23. Find the determinant of the matrix A below:

$$A = \begin{bmatrix} 4 & 8 & 8 & 8 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 6 & 8 & 8 & 8 & 7 \\ 0 & 8 & 8 & 3 & 0 \\ 0 & 8 & 2 & 0 & 0 \end{bmatrix}$$

24. Let A, B be given below. Form the matrix product AB, if defined:

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 1 \\ 2 & 1 \\ 1 & 2 \end{bmatrix}$$

25. Given the matrix A, B below:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 0 \\ 3 & 2 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- (a) Compute only the (2,3) entry of AB:
- (b) Compute only the (3, 2) entry of AB^T :
- (c) Compute $B 3I_3$:
- (d) Compute C_{23} for matrix A (that's the (2,3) cofactor).
- 26. If A is the 2×3 matrix below, find a matrix C so that AC = I, but note that C is not the inverse of A. To simplify your computations, I've given you one form for C that you might use.

ſ	1	2	_1]		c_{11}	c_{12}
$A = \left[\right]$	6	-9^{2}	3	C =	$c_{21} \\ 0$	$\begin{array}{c} c_{22} \\ 0 \end{array}$
					_ 0	L

- 27. Suppose A is $n \times n$ with the property that $A\mathbf{x} = \vec{0}$ has only the trivial solution. Without using the invertible matrix theorem, explain directly why the equation $A\mathbf{x} = \mathbf{b}$ must have a solution for every **b**.
- 28. Explain why the columns of A^2 span \mathbb{R}^n whenever the columns of A are linearly independent. (Hint: You might think about whether or not A^2 must be invertible).
- 29. Suppose subspace H is the span of the two vectors below in set \mathcal{B} :

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0 \end{bmatrix} \right\} = \{\mathbf{v}_1, \mathbf{v}_2\}$$

- (a) Does \mathcal{B} span \mathbb{R}^3 ? Why or why not?
- (b) Find $[\mathbf{v}_1]_{\mathcal{B}}$
- (c) If $\mathbf{c} = (3, 3, 0)$, find $[\mathbf{c}]_{\mathcal{B}}$