Math 240, Second Exam REVIEW QUESTIONS

1. Short Answer:
(a) Finish the definition: The set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ spans set V if:
(b) Finish the definition: The set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ for a basis for vector space V if:
(c) Finish the definition: The rank of a matrix is:
(d) How was the matrix-matrix product $A B$ defined?
(e) Finish the definition:

The $n \times n$ matrix A is invertible if:
(Note that this is the definition, not something equivalent to the definition).
(f) If A is an $m \times n$ matrix, the column space of A is a subspace of $\mathbb{R}^{?}$, and it is defined as:
(g) If A is an $m \times n$ matrix, the null space of A is a subspace of $\mathbb{R}^{?}$ and it is defined as:
(h) Finish the definition:

Subset H in vector space V is a subspace if:
(i) Find the inverse of $\left[\begin{array}{rr}1 & 2 \\ 5 & 12\end{array}\right]$
2. Find the inverse of the matrix A below:

$$
A=\left[\begin{array}{rrr}
1 & 1 & -1 \\
4 & 2 & -1 \\
-2 & -1 & 1
\end{array}\right]
$$

3. Suppose A, B and X are $n \times n$ matrices, with A, X, and $A-A X$ invertible, and suppose

$$
(A-A X)^{-1}=X^{-1} B
$$

First, explain why B is invertible, then solve the equation for X. If you need to invert a matrix, explain why it is invertible.
4. Show that, if $A B$ is invertible, then so is A (assume A, B are $n \times n$).
5. Let $A=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right], B=\left[\begin{array}{ccc}a+2 g & b+2 h & c+2 i \\ d+3 g & e+3 h & f+3 i \\ g & h & i\end{array}\right]$, and $C=\left[\begin{array}{ccc}g & h & i \\ 2 d & 2 e & 2 f \\ a & b & c\end{array}\right]$.

If $\operatorname{det}(A)=5$, find $\operatorname{det}(B), \operatorname{det}(C), \operatorname{det}(B C)$.
6. Assume that A and B are row equivalent, where:

$$
A=\left[\begin{array}{rrrrr}
1 & 2 & -2 & 0 & 7 \\
-2 & -3 & 1 & -1 & -5 \\
-3 & -4 & 0 & -2 & -3 \\
3 & 6 & -6 & 5 & 1
\end{array}\right], \quad B=\left[\begin{array}{rrrrr}
1 & 0 & 4 & 0 & -3 \\
0 & 1 & -3 & 0 & 5 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) State which vector space contains each of the four subspaces, and state the dimension of each of the four subspaces:
(b) Find a basis for $\operatorname{Col}(A)$:
(c) Find a basis for $\operatorname{Row}(A)$:
(d) Find a basis for $\operatorname{Null}(A)$:
7. Determine if the following sets are subspaces of V. Justify your answers.

- $H=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right], a \geq 0, \quad b \geq 0, \quad c \geq 0\right\}, \quad V=\mathbb{R}^{3}$
- $H=\left\{\left[\begin{array}{c}a+3 b \\ a-b \\ 2 a+b \\ 4 a\end{array}\right], a, b\right.$ in $\left.\mathbb{R}\right\}, \quad V=\mathbb{R}^{4}$
- $H=\left\{f: f^{\prime}(x)=f(x)\right\}, V=C^{1}(-\infty, \infty)$
(C^{1} is the space of differentiable functions where the derivative is continuous).
- H is the set of vectors in \mathbb{R}^{3} whose first entry is the sum of the second and third entries, $V=\mathbb{R}^{3}$.

8. Prove that, if $T: V \mapsto W$ is a linear transformation between vector spaces V and W, then the range of T, which we denote as $T(V)$, is a subspace of W.
9. Let H, K be subspaces of vector space V. Define $H+K$ as the set below, and see if $H+K$ is a subspace (check all parts of the definition).

$$
H+K=\{\mathbf{w} \mid \mathbf{w}=\mathbf{u}+\mathbf{v}, \text { for some } \mathbf{u} \in H, \mathbf{v} \in K\}
$$

10. Let A be an $n \times n$ matrix. Write statements from the Invertible Matrix Theorem that are each equivalent to the statement " A is invertible". Use the following concepts, one in each statement:
(a) $\operatorname{Null}(A)$
(b) Basis
(c) Rank
(d) $\operatorname{det}(A)$
11. Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.
12. Show that $\left\{1,2 t,-2+4 t^{2}\right\}$ is a basis for P_{2}.
13. Let $T: V \rightarrow W$ be a $1-1$ and linear transformation on vector space V to vector space W. Show that if $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ are linearly dependent vectors in W, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ are linearly dependent vectors in V.
14. Use Cramer's Rule to solve the system:
15. Let $A=\left[\begin{array}{rr}-6 & 12 \\ -3 & 6\end{array}\right]$, and $\mathbf{w}=[2,1]^{T}$. Is \mathbf{w} in the column space of A ? Is it in the null space of A ?
16. Prove that the column space is a vector space using a very short proof, then prove it directly by showing the three conditions hold.
17. If A, B are 4×4 matrices with $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=-3$, what is the determinant of the following (if you can compute it): (a) $\operatorname{det}(A B),(\mathrm{b}) \operatorname{det}\left(A^{-1}\right),(\mathrm{c}) \operatorname{det}(5 B)$ (d) $\operatorname{det}(3 A-2 B)$, (e) $\operatorname{det}\left(B^{T}\right)$
18. True or False, and give a short reason:
(a) If $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=3$, then $\operatorname{det}(A+B)=5$.
(b) Let A be $n \times n$. Then $\operatorname{det}\left(A^{T} A\right) \geq 0$.
(c) If A^{3} is the zero matrix, then $\operatorname{det}(A)=0$.
(d) \mathbb{R}^{2} is a two dimensional subspace of \mathbb{R}^{3}.
(e) Row operations preserve the linear dependence relations among the rows of A.
(f) The sum of the dimensions of the row space and the null space of A equals the number of rows of A.
19. Let the matrix A and its RREF, R_{A}, be given as below:

$$
A=\left[\begin{array}{rrrrr}
1 & 1 & 7 & 2 & 2 \\
3 & 0 & 9 & 3 & 4 \\
-3 & 1 & -5 & -2 & 3 \\
2 & 2 & 14 & 4 & 2
\end{array}\right] \quad R_{A}=\left[\begin{array}{lllll}
1 & 0 & 3 & 1 & 0 \\
0 & 1 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so that the columns of A are $\mathbf{a}_{1}, \cdots, \mathbf{a}_{5}$.
Similarly, define Z and its RREF, R_{Z}, as:

$$
Z=\left[\begin{array}{rrrr}
4 & 5 & 3 & 4 \\
5 & 6 & 5 & -3 \\
10 & -3 & 9 & -106 \\
4 & 10 & 2 & 44
\end{array}\right] \quad R_{z}=\left[\begin{array}{rrrr}
1 & 0 & 0 & -4 \\
0 & 1 & 0 & 7 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Label the columns of Z as $\mathbf{z}_{1}, \cdots, \mathbf{z}_{4}$.
(a) Find the rank of A and a basis for the column space of A (use the notation \mathbf{a}_{1}, etc.). Similarly, do the same for Z :
(b) You'll notice that the rank of A is the rank of Z. Here is a row reduction using some columns of A and Z :

$$
\left[\begin{array}{rrr|rrr}
1 & 1 & 2 & 4 & 5 & 3 \\
3 & 0 & 4 & 5 & 6 & 5 \\
-3 & 1 & 3 & 10 & -3 & 9 \\
2 & 2 & 2 & 4 & 10 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -1 & 2 & -1 \\
0 & 1 & 0 & 1 & 3 & 0 \\
0 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Are the subspaces spanned by the columns of A and Z equal?
(c) Let \mathcal{B} and be the set of basis vectors used for the column spaces of A found in (a). Find the change of coordinates matrix $P_{\mathcal{B}}$ that changes the coordinates from \mathcal{B} to the standard basis, then find the coordinates of \mathbf{z}_{1} with respect to \mathcal{B} (Hint: The second part does not rely on the first).
(d) Find the coordinates of \mathbf{z}_{4} using the basis vectors in $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3}$.
20. Short Answer:
(a) Define the kernel of a transformation T :
(b) Define the dimension of a vector space:
(c) We said that \mathbb{P}_{n} is isomorphic to \mathbb{R}^{n+1}. What is the isomorphism?
(d) If C is 4×5, what is the largest possible rank of C ?

What is the smallest possible dimension of the null space of C ?
(e) If A is a 4×7 matrix with rank 3 , find the dimensions of the four fundamental subspaces of A.
(f) Show that the coordinate mapping (from n-dimensional vector space V to \mathbb{R}^{n}) is onto.
21. Let A be $m \times n$ and let B be $n \times p$. Show that the $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$. (Hint: Explain why every vector in the column space of $A B$ is in the column space of A).
22. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
(a) If T is one-to-one, what is the dimension of the range of T ?
(b) What is the dimension of the kernel of T if T maps \mathbb{R}^{n} onto \mathbb{R}^{m} ? Explain.
23. Find the determinant of the matrix A below:

$$
A=\left[\begin{array}{lllll}
4 & 8 & 8 & 8 & 5 \\
0 & 1 & 0 & 0 & 0 \\
6 & 8 & 8 & 8 & 7 \\
0 & 8 & 8 & 3 & 0 \\
0 & 8 & 2 & 0 & 0
\end{array}\right]
$$

24. Let A, B be given below. Form the matrix product $A B$, if defined:

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
1 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{rr}
-1 & 1 \\
2 & 1 \\
1 & 2
\end{array}\right]
$$

25. Given the matrix A, B below:

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & 1 & 0 \\
3 & 2 & 0
\end{array}\right] \quad B=\left[\begin{array}{rrr}
1 & -1 & 2 \\
2 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

(a) Compute only the $(2,3)$ entry of $A B$:
(b) Compute only the $(3,2)$ entry of $A B^{T}$:
(c) Compute $B-3 I_{3}$:
(d) Compute C_{23} for matrix A (that's the $(2,3)$ cofactor).
26. If A is the 2×3 matrix below, find a matrix C so that $A C=I$, but note that C is not the inverse of A. To simplify your computations, I've given you one form for C that you might use.

$$
A=\left[\begin{array}{rrr}
-1 & 2 & -1 \\
6 & -9 & 3
\end{array}\right] \quad C=\left[\begin{array}{rr}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
0 & 0
\end{array}\right]
$$

27. Suppose A is $n \times n$ with the property that $A \mathbf{x}=\overrightarrow{0}$ has only the trivial solution. Without using the invertible matrix theorem, explain directly why the equation $A \mathbf{x}=\mathbf{b}$ must have a solution for every \mathbf{b}.
28. Explain why the columns of A^{2} span \mathbb{R}^{n} whenever the columns of A are linearly independent. (Hint: You might think about whether or not A^{2} must be invertible).
29. Suppose subspace H is the span of the two vectors below in set \mathcal{B} :

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]\right\}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}
$$

(a) Does \mathcal{B} span \mathbb{R}^{3} ? Why or why not?
(b) Find $\left[\mathbf{v}_{1}\right]_{\mathcal{B}}$
(c) If $\mathbf{c}=(3,3,0)$, find $[\mathbf{c}]_{\mathcal{B}}$

