## Dynamical System

- A set of points and a rule.
- For function iteration,  $x_{i+1} = f(x_i)$
- Starting with  $x_0$ , we have:

$$x_0$$
  $x_1 = f(x_0)$   $x_2 = f(f(x_0))$   $x_3 = f(f(f(x_0)))$ 

and so on...

- $x_0, x_1, x_2, \cdots$  is called the orbit of  $x_0$ .
- Question: What is the long term behavior of the orbit?

$$\lim_{t\to\infty}x_t=\lim_{t\to\infty}f^{(t)}(x_0)$$

### Example 1

Let  $x_0 = \frac{1}{2}$ , and  $f(x) = x^2$ . Then:

This orbit seems to converge to zero.

What will the orbit of  $x_0 = 2$  do? (Diverge)

Let  $x_0 = 0$  and  $x_0 = 1$ . Orbits don't change.

These are the **Equilibrium Solutions**:

$$x = f(x)$$
  $x = x^2$   $x^2 - x = 0$   $x(x - 1) = 0$   $x = 0, 1$ 



Summary of the dynamics using  $f(x) = x^2$  and the real line:

If 
$$0 < x_0 < 1$$
 then  $x_i \to 0$  as  $i \to \infty$ 

And

If 
$$x_0 > 1$$
 then  $x_i \to \infty$  as  $i \to \infty$ 

The equilibrium  $x_0 = 0$  is *stable* The equilibrium  $x_0 = 1$  is *unstable* 

### Example 2: Markov Chains

Markov chains can be used to simulate transitions between states using probabilities.



"If today sunny, the probability of sunny tomorrow is 80%, and the probability of rain is 20%".

"If rainy today, the probability of rainy tomorrow is 40%, and the probability of sun is 60%."

Using a random choice:

S S R R S R R R R S R S S R S R R R S S S

Using a Markov Chain:

RSSSSSSRSRRSSSSSRSSS



You can track your moods...



You might model the economy...

### Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).

Find transition probabilities.

Put the strings of words together!

#### Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get" "to get" could be followed by "down." or "rid" or "dressed" Choose "down."
- "down." has a period, which finishes phrase.

I like to get down.

(Search for "Nossidge snowball" - His code available online)

### Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.

o
we
all
have
heard
people
believe
anything

### Markov Chain Poetry

am
the
dawn
light
before
anybody
expected
something
disorderly

#### Some definitions

- A vector with positive entries that sum to 1: Probability Vector
- A matrix M with columns that are probability vectors is a stochastic matrix
   Example:

$$M = \begin{array}{c|cccc} & & & From \\ & 1 & 2 & 3 \\ \hline & 1 & 0.7 & 0.3 & 0.1 \\ To: 2 & 0.2 & 0.5 & 0.0 \\ & 3 & 0.1 & 0.2 & 0.9 \end{array}$$

The 0.3 entry means there is a probability of 30% of going to state 1 from state 2.

• A stochastic matrix is *regular* if there is a k so that  $P^k$  has all non-negative values. (The example is regular, if you check  $P^2$ ).

# Markov Chain Dynamics

EXAMPLE: Define our state vector as:

$$\mathbf{x} = \begin{bmatrix} \mathsf{City} \\ \mathsf{Suburbs} \end{bmatrix}$$

Define the transition matrix:

|         |      | From |      |
|---------|------|------|------|
|         | City |      | Subs |
|         | 0.95 |      | 0.03 |
| To Subs | 0.05 |      | 0.97 |

The dynamics:  $\mathbf{x}_k = M^k \mathbf{x}_0$ .

If 60% of the population is in the city, 40% in the suburbs, we can compute the percentages for next year:

$$\mathbf{x}_1 = \left[ egin{array}{cc} 0.95 & 0.03 \\ 0.05 & 0.97 \end{array} 
ight] \left[ egin{array}{c} 0.6 \\ 0.4 \end{array} 
ight] = M \mathbf{x}_0 = \left[ egin{array}{c} 0.582 \\ 0.418 \end{array} 
ight]$$

$$\mathbf{x}_2 = \begin{bmatrix} 0.95 & 0.03 \\ 0.05 & 0.97 \end{bmatrix} \begin{bmatrix} 0.582 \\ 0.418 \end{bmatrix} = M^2 \mathbf{x}_0 = \begin{bmatrix} 0.565 \\ 0.435 \end{bmatrix}$$

and so on...

If the orbit does converge, it will converge to a fixed point.

Definition: x is fixed if x = f(x).

In this context, x is fixed if

$$\mathbf{x} = M\mathbf{x}$$
  $M\mathbf{x} - \mathbf{x} = \vec{0}$   $(M - I)\mathbf{x} = \vec{0}$ 

For example,

$$(M-I)\mathbf{x} = \vec{0}$$
  $\Rightarrow$   $\begin{bmatrix} 0.95 - 1 & 0.03 \\ 0.05 & 0.97 - 1 \end{bmatrix} \mathbf{x} = \vec{0}$   
$$\begin{bmatrix} -0.05 & 0.03 \\ 0.05 & -0.03 \end{bmatrix} \mathbf{x} = \vec{0}$$

Therefore, if  $\mathbf{x} = [c, s]^T$ , then:

$$-5c + 3s = 0 \quad \Rightarrow \quad \begin{array}{c} c = 3/5s \\ s = s \end{array}$$

$$= s \left[ \begin{array}{c} 3/5 \\ 1 \end{array} \right] = s_1 \left[ \begin{array}{c} 3 \\ 5 \end{array} \right] = s_2 \left[ \begin{array}{c} 3/8 \\ 5/8 \end{array} \right]$$

If 3/8 of the population is in the city, 5/8 in the suburbs, then the populations will remain unchanged in time.

HOMEWORK: Exercises 1, 2, 3, 9, 11, 12