Math 240, Second Exam REVIEW QUESTIONS

1. Find the inverse of the matrix A below:

$$A = \left[\begin{array}{rrr} 1 & 1 & -1 \\ 4 & 2 & -1 \\ -2 & -1 & 1 \end{array} \right]$$

2. Suppose A, B and X are $n \times n$ matrices, with A, X, and A - AX invertible, and suppose

$$(A - AX)^{-1} = X^{-1}B$$

First, explain why B is invertible, then solve the equation for X. If you need to invert a matrix, explain why it is invertible.

- 3. Let $A = \begin{bmatrix} 1 & 2 \\ 5 & 12 \end{bmatrix}$. Find A^{-1} using the formula, then solve $A\mathbf{x} = [3, 5]^T$.
- 4. Show that, if AB is invertible, then so is A (assume A, B are $n \times n$). Hint: If AB is invertible, then there is a matrix W so that ABW = I.
- 5. Let S be the parallelogram whose vertices are (-1,1),(0,4),(1,2) and (2,5). Use determinants to find the area of S.
- 6. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, $B = \begin{bmatrix} a+2g & b+2h & c+2i \\ d+3g & e+3h & f+3i \\ g & h & i \end{bmatrix}$, and $C = \begin{bmatrix} g & h & i \\ 2d & 2e & 2f \\ a & b & c \end{bmatrix}$.

If det(A) = 5, find det(B), det(C), det(BC).

7. Assume that A and B are row equivalent, where:

$$A = \begin{bmatrix} 1 & 2 & -2 & 0 & 7 \\ -2 & -3 & 1 & -1 & -5 \\ -3 & -4 & 0 & -2 & -3 \\ 3 & 6 & -6 & 5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & -3 & 0 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) State which vector space contains each of the four subspaces, and state the dimension of each of the four subspaces:
- (b) Find a basis for Col(A):
- (c) Find a basis for Row(A):
- (d) Find a basis for Null(A):
- 8. Determine if the following sets are subspaces of V. Justify your answers.

1

•
$$H = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix}, a \ge 0, b \ge 0, c \ge 0 \right\}, \qquad V = \mathbb{R}^3$$

•
$$H = \left\{ \begin{bmatrix} a+3b\\ a-b\\ 2a+b\\ 4a \end{bmatrix}, a,b \text{ in } \mathbb{R} \right\}, V = \mathbb{R}^4$$

- $H = \{f : f'(x) = f(x)\}, V = C^1(-\infty, \infty)$ (C^1 is the space of differentiable functions where the derivative is continuous).
- H is the set of vectors in \mathbb{R}^3 whose first entry is the sum of the second and third entries, $V = \mathbb{R}^3$.
- 9. Prove that, if $T: V \mapsto W$ is a linear transformation between vector spaces V and W, then the range of T, which we denote as T(V), is a subspace of W.
- 10. Let H, K be subspaces of vector space V. Define H + K as the set below, and see if H + K is a subspace (check all parts of the definition).

$$H + K = \{ \mathbf{w} \mid \mathbf{w} = \mathbf{u} + \mathbf{v}, \text{ for some } \mathbf{u} \in H, \mathbf{v} \in K \}$$

- 11. Let A be an $n \times n$ matrix. Write statements from the Invertible Matrix Theorem that are each equivalent to the statement "A is invertible". Use the following concepts, one in each statement: (a) Null(A) (b) Basis (c) Rank (d) det(A)
- 12. Is it possible that all solutions of a homogeneous system of ten linear equations in twelve variables are multiples of one fixed nonzero solution? Discuss.
- 13. Show that $\{1, 2t, -2 + 4t^2\}$ is a basis for P_2 .
- 14. Let $T: V \to W$ be a 1-1 and linear transformation on vector space V to vector space W. Show that if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\}$ are linearly dependent vectors in W, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ are linearly dependent vectors in V.
- 15. Use Cramer's Rule to solve the system:

$$\begin{array}{ccccc}
2x_1 & +x_2 & & = 7 \\
-3x_1 & & +x_3 & = -8 \\
& & x_2 & +2x_3 & = -3
\end{array}$$

- 16. Let $A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix}$, and $\mathbf{w} = [2, 1]^T$. Is \mathbf{w} in the column space of A? Is it in the null space of A?
- 17. Prove that the column space is a vector space using a very short proof, then prove it directly by showing the three conditions hold.
- 18. If A, B are 4×4 matrices with $\det(A) = 2$ and $\det(B) = -3$, what is the determinant of the following (if you can compute it): (a) $\det(AB)$, (b) $\det(A^{-1})$, (c) $\det(5B)$ (d) $\det(3A 2B)$, (e) $\det(B^T)$

- 19. True or False, and give a short reason:
 - (a) If det(A) = 2 and det(B) = 3, then det(A + B) = 5.
 - (b) Let A be $n \times n$. Then $\det(A^T A) \ge 0$.
 - (c) If A^3 is the zero matrix, then det(A) = 0.
 - (d) \mathbb{R}^2 is a two dimensional subspace of \mathbb{R}^3 .
 - (e) Row operations preserve the linear dependence relations among the rows of A.
 - (f) The sum of the dimensions of the row space and the null space of A equals the number of rows of A.
- 20. Let the matrix A and its RREF, R_A , be given as below:

$$A = \begin{bmatrix} 1 & 1 & 7 & 2 & 2 \\ 3 & 0 & 9 & 3 & 4 \\ -3 & 1 & -5 & -2 & 3 \\ 2 & 2 & 14 & 4 & 2 \end{bmatrix} \quad R_A = \begin{bmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

so that the columns of A are $\mathbf{a}_1, \dots, \mathbf{a}_5$.

Similarly, define Z and its RREF, R_Z , as:

$$Z = \begin{bmatrix} 4 & 5 & 3 & 4 \\ 5 & 6 & 5 & -3 \\ 10 & -3 & 9 & -106 \\ 4 & 10 & 2 & 44 \end{bmatrix} \quad R_z = \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Label the columns of Z as $\mathbf{z}_1, \dots, \mathbf{z}_5$.

- (a) Find the rank of A and a basis for the column space of A (use the notation \mathbf{a}_1 , etc.). Similarly, do the same for Z:
- (b) You'll notice that the rank of A is the rank of Z. Here is a row reduction using some columns of A and Z:

$$\begin{bmatrix} 1 & 1 & 2 & 4 & 5 & 3 \\ 3 & 0 & 4 & 5 & 6 & 5 \\ -3 & 1 & 3 & 10 & -3 & 9 \\ 2 & 2 & 2 & 4 & 10 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 2 & -1 \\ 0 & 1 & 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Are the subspaces spanned by the columns of A and Z equal?

(c) Let \mathcal{B} and be the set of basis vectors used for the column spaces of A found in (a). Find the change of coordinates matrix $P_{\mathcal{B}}$ that changes the coordinates from \mathcal{B} to the standard basis, then find the coordinates of \mathbf{z}_1 with respect to \mathcal{B} (Hint: The second part does not rely on the first).

3

(d) Find the coordinates of \mathbf{z}_4 using the basis vectors in $\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3$.

21. Short Answer:

- (a) Define the kernel of a transformation T:
- (b) Define the *dimension* of a vector space:
- (c) We said that \mathbb{P}_n is isomorphic to \mathbb{R}^{n+1} . What is the isomorphism?
- (d) If C is 4×5 , what is the largest possible rank of C?

 What is the smallest possible dimension of the null space of C?
- (e) If A is a 4×7 matrix with rank 3, find the dimensions of the four fundamental subspaces of A.
- (f) Show that the coordinate mapping (from n-dimensional vector space V to \mathbb{R}^n) is onto.
- 22. Let A be $m \times n$ and let B be $n \times p$. Show that the rank $(AB) \leq \text{rank}(A)$. (Hint: Explain why every vector in the column space of AB is in the column space of A).
- 23. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - (a) If T is one-to-one, what is the dimension of the range of T?
 - (b) What is the dimension of the kernel of T if T maps \mathbb{R}^n onto \mathbb{R}^m ? Explain.
- 24. Find the determinant of the matrix A below:

$$A = \left[\begin{array}{ccccc} 4 & 8 & 8 & 8 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 6 & 8 & 8 & 8 & 7 \\ 0 & 8 & 8 & 3 & 0 \\ 0 & 8 & 2 & 0 & 0 \end{array} \right]$$

25. Let P be the stochastic matrix below. Find an equilibrium solution to the Markov Chain $\mathbf{x}_{i+1} = P\mathbf{x}$:

$$P = \left[\begin{array}{cc} 0.8 & 0.5 \\ 0.2 & 0.5 \end{array} \right]$$

- 26. On any given day, a student is either healthy or ill. Of the students that are healthy today, 95% will be healthy tomorrow. Of the students that are ill today, 55% will still be ill tomorrow.
 - What is the stochastic matrix for this situation?
 - Suppose 20% of the students are ill on Monday. What fraction are likely to be ill on Tuesday? On Wednesday?
 - If a student is well today, what is the probability that he or she will be well two days from now?

4