
Review Material, After the Third Exam

The material after the third exam includes: 6.5 (Least Squares), 6.6 (Applications to Linear
Models), 6.7 (Inner Product Spaces), then we looked at 7.1 (Symmetric Matrices and the
Spectral Theorem), and finally we spent several days on 7.4 (The SVD).

Important Definitions

Orthogonal matrix, Least squares solution of Ax = b, normal equation, symmetric matrix,
orthogonally diagonalizable. Given a general inner product, be able to define the norm, the
length, the distance and the angle for vectors in a general vector space. Define the singular
values of a matrix, and the pseudoinverse.

Skills (Partial List)

Compute the least squares solution using the normal equations. Set up a matrix
equation for a given linear model and find the least squares solution.

Be able to prove the Triangle Inequality (Theorem 6.7.17)- That is, be able to expand
the norm in terms of the inner product and simplify.

Use Gram-Schmidt and be able to compute projections in a general vector space (using
a given inner product).

Orthogonally diagonalize a symmetric matrix. Be able to project a vector into a
subspace spanned by a given set of orthonormal vectors (and be able to use matrix
notation). Understand how the Spectral Decomposition works (decomposition into
rank one matrices).

Be able to compute the SVD by hand for small matrices. Understand the specific
relationship between the SVD for a matrix A and the four fundamental subspaces.

For the take home portion, be able to compute the SVD of a matrix using a computer
program (Matlab or Octave), and be able to determine the rank. Be able to compute
the pseudoinverse and solve a least squares problem, or be able to project data into
the space spanned by either the columns of U or V . A good indicator of the type of
problem was distributed on our last day of class. All the solutions to those problems
are available in Matlab: (1) Solution is item (4). For exercise (2), download and read
VanderExample.m from the class website, and for exercise (3), download and read
SampleAuthor.m from the class website. Try running this code in Matlab, and see if
you understand the commands.

Important Theorems

6.5.14 (Solving Normal Eqns), 7.1.2 (Symmetric is equivalent to orth. diag.), 7.1.3 (The
Spectral Theorem), 7.4.10 (The SVD).
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Review Questions

1. Find the least squares solution to Ax = b, given A and b below. Note that the columns
of A are orthogonal, and use that fact.

A =

 2 −1
2 2
1 −2

 b =

2. Find the line that best fits the data: (−1,−1), (0, 2), (1, 4), (2, 5). Do this by first
finding a matrix equation that you will then find the least squares solution to (by
using the normal equations).

3. Suppose A is m×n with linearly independent columns and b is in IRm. Use the normal
equations to produce a formula for b̂, the projection of b onto the column space of A.
(Hint: First find x̂ which does not require an orthogonal basis for Col(A).)

4. Show that if x ∈ Null(A), then x ∈ Null(ATA).

Show that if ATAx = 0, then ‖Ax‖ =?.

Use the above to show that, if x ∈ Null(ATA), then x ∈ Null(A).

Altogether, this problem is showing that the null spaces of A and ATA are the same!

5. Using the last problem, what can we conclude about the rank of A versus the rank of
ATA?

6. Suppose I have a model equation: y = β0 + β1 sin(v) + β2 ln(w).

Given the following data, set up the matrix equation from which we could determine
a least squares solution for the β’s:

v w y
−1 2 1

1 1 2
0 3 −1
3 2 0

(Do NOT actually solve for the β’s, just set up the matrix equation).

7. Given vectors u,v in the vector space IRn with the usual dot product as inner product,
show that the Pythagorean Theorem still holds. That is, if u and v are orthogonal to
each other, then:

‖u + v‖2 = ‖u‖2 + ‖v‖2

8. Orthogonally diagonalize the symmetric matrix A =

[
7 2
2 4

]
.
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9. True or False, and explain: For every non-zero vector v ∈ IRn, the matrix vvT is called
a projection matrix.

10. Show that, if A is symmetric, then any two eigenvectors from distinct eigenvalues are
orthogonal. Hint: Start with λ1v1 ·v2, and see if you can transform this into λ2v1 ·v2.

11. Suppose we have the matrix A = [1, 1, 1].

(a) What will the singular values of A be? (Try to compute them in the easiest
possible way).

(b) Find (by hand) the reduced SVD for the matrix A. See if you can do it without
any computation.

(c) Find a basis for the null space of A using the rest of the SVD that hasn’t been
computed yet (this one we’ll need to compute).

12. Show that the eigenvalues of ATA are non-negative. Hint: Consider ‖Avi‖.

13. Suppose the SVD was given as the following:

A =

 0.65 −0.75 0
0 0 1

0.75 0.65 0


 15.91 0 0

0 3.26 0
0 0 0


 −0.52 −0.62 −0.57
−0.27 0.76 −0.57
−0.80 0.14 0.57


T

(a) What is the rank of A?

(b) Write a basis for the column space and null space of A.

(c) Write the matrix product for the pseudoinverse of A (you don’t need to multiply
it out).

14. Suppose A is square and invertible. Find the SVD of A−1.

15. Show that if A is square, then |det(A)| is the product of the singular values of A.
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