Linear Algebra- Final Exam Review Questions

For the final exam, you may not use a calculator. The length of the exam is about an one and a half exams, and will be approximately weighted: 40% new material, then about 20% taken from the other three portions of the course (to add to 60%).

1. Show that $\operatorname{Row}(A) \perp \operatorname{Null}(A)$.
2. Let A be invertible. Show that, if $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent vectors, so are $A \mathbf{v}_{1}, A \mathbf{v}_{2}, A \mathbf{v}_{3}$. NOTE: It should be clear from your answer that you know the definition.
3. Find the line of best fit for the data:

$$
\begin{array}{l|llll}
x & 0 & 1 & 2 & 3 \\
\hline y & 1 & 1 & 2 & 2
\end{array}
$$

4. Let $A=\left[\begin{array}{rr}-3 & 0 \\ 0 & 0\end{array}\right]$. (a) Is A orthogonally diagonalizable? If so, orthogonally diagonalize it! (b) Find the SVD of A.
5. Let V be the vector space spanned by the functions on the interval $[-1,1]$.

$$
\left\{1, t, t^{2}\right\}
$$

Use Gram-Schmidt to find an orthonormal basis, if we define the inner product:

$$
\langle f(t), g(t)\rangle=\int_{-1}^{1} 2 f(t) g(t) d t
$$

6. Suppose that vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent vectors in \mathbb{R}^{n}. Determine if the set $\{\mathbf{u}+\mathbf{v}, \mathbf{u}-\mathbf{v}, \mathbf{u}-2 \mathbf{v}+\mathbf{w}\}$ are also linearly independent.
7. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ be orthonormal. If

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}
$$

then show that $\|\mathbf{x}\|^{2}=\left|c_{1}\right|^{2}+\cdots+\left|c_{p}\right|^{2}$. (Hint: Write the norm squared as the dot product).
8. Short answer:
(a) If $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$, then \mathbf{u}, \mathbf{v} are orthogonal.
(b) Let H be the subset of vectors in \mathbb{R}^{3} consisting of those vectors whose first element is the sum of the second and third elements. Is H a subspace?
(c) Explain why the image of a linear transformation $T: V \rightarrow W$ is a subspace of W (d) Is the following matrix diagonalizable? Explain. $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 5 & 8 \\ 0 & 0 & 13\end{array}\right]$
(e) If the column space of an 8×4 matrix A is 3 dimensional, give the dimensions of the other three fundamental subspaces. Given these numbers, is it possible that the mapping $\mathrm{x} \rightarrow A \mathrm{x}$ is one to one? onto?
(f) i. Suppose matrix Q has orthonormal columns. Must $Q^{T} Q=I$?
ii. True or False: If Q is $m \times n$ with $m>n$, then $Q Q^{T}=I$.
iii. Suppose Q is an orthogonal matrix. Prove that $\operatorname{det}(Q)= \pm 1$.
9. Find a basis for the null space, row space and column space of A, if $A=\left[\begin{array}{cccc}1 & 1 & 2 & 2 \\ 2 & 2 & 5 & 5 \\ 0 & 0 & 3 & 3\end{array}\right]$
10. Find an orthonormal basis for $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ using Gram-Schmidt (you might wait until the very end to normalize all vectors at once):

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right], \quad \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right], \quad \mathbf{x}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

11. Let \mathbb{P}_{n} be the vector space of polynomials of degree n or less. Let W_{1} be the subset of \mathbb{P}_{n} consisting of $\mathbf{p}(t)$ so that $\mathbf{p}(0) \mathbf{p}(1)=0$. Let W_{2} be the subset of \mathbb{P}_{n} consisting of $\mathbf{p}(t)$ so that $\mathbf{p}(2)=0$. Which if the two is a subspace of \mathbb{P}_{n} ?
12. For each of the following matrices, find the characteristic equation, the eigenvalues and a basis for each eigenspace:

$$
A=\left[\begin{array}{rr}
7 & 2 \\
-4 & 1
\end{array}\right] \quad B=\left[\begin{array}{rr}
3 & -1 \\
1 & 3
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

13. Define $T: P_{2} \rightarrow \mathbb{R}^{3}$ by: $T(p)=\left[\begin{array}{c}p(-1) \\ p(0) \\ p(1)\end{array}\right]$
(a) Find the image under T of $p(t)=5+3 t$.
(b) Show that T is a linear transformation.
(c) Find the kernel of T. Does your answer imply that T is $1-1$? Onto? (Review the meaning of these words: kernel, one-to-one, onto)
14. Let \mathbf{v} be a vector in \mathbb{R}^{n} so that $\|\mathbf{v}\|=1$, and let $Q=I-2 \mathbf{v} \mathbf{v}^{T}$. Show (by direct computation) that $Q^{2}=I$.
15. Let A be $m \times n$ and suppose there is a matrix C so that $A C=I_{m}$. Show that the equation $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b}. Hint: Consider $A C \mathbf{b}$.
16. If B has linearly dependent columns, show that $A B$ has linearly dependent columns. Hint: Consider the null space.
17. If λ is an eigenvalue of A, then show that it is an eigenvalue of A^{T}.
18. Let $\boldsymbol{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\boldsymbol{v}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$, Let S be the parallelogram with vertices at $\mathbf{0}, \boldsymbol{u}, \boldsymbol{v}$, and $\boldsymbol{u}+v$. Compute the area of S.
19. Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right], B=\left[\begin{array}{ccc}a+2 g & b+2 h & c+2 i \\ d+3 g & e+3 h & f+3 i \\ g & h & i\end{array}\right]$, and $C=\left[\begin{array}{ccc}g & h & i \\ 2 d & 2 e & 2 f \\ a & b & c\end{array}\right]$. If $\operatorname{det}(A)=5$, find $\operatorname{det}(B), \operatorname{det}(C), \operatorname{det}(B C)$.
20. Let $1, t$ be two vectors in $C[-1,1]$. Find the length between the two vectors and the cosine of the angle between them using the standard inner product (the integral). Find the orthogonal projection of t^{2} onto the set spanned by $\{1, t\}$.
21. Define an isomorphism. Why is an isomorphism important?
22. Let

$$
\mathcal{B}=\left\{\left[\begin{array}{r}
1 \\
-3
\end{array}\right],\left[\begin{array}{r}
2 \\
-8
\end{array}\right],\left[\begin{array}{r}
-3 \\
7
\end{array}\right]\right\}
$$

Find at least two \mathcal{B}-coordinate vectors for $\mathbf{x}=[1,1]^{T}$.
23. Let U, V be orthogonal matrices. Show that $U V$ is an orthogonal matrix.
24. In terms of the four fundamental subspaces for a matrix A, what does it mean to say that:

- $A \mathbf{x}=\mathbf{b}$ has exactly one solution.
- $A \mathbf{x}=\mathbf{b}$ has no solution.
- In the previous case, what is the "least squares" solution? What quantity is being minimized?
- $A \mathbf{x}=\mathbf{b}$ has an infinite number of solutions.

25. Let T be a one-to-one linear transformation for a vector space V into \mathbb{R}^{n}. Show that for \mathbf{u}, \mathbf{v} in V, the formula:

$$
\langle u, v\rangle=T(\mathbf{u}) \cdot T(\mathbf{v})
$$

defines an inner product on V.
26. Describe all least squares solutions to $\begin{aligned} & x+y=2 \\ & x+y=4\end{aligned}$
27. Let $\mathbf{u}=[5,-6,7]^{T}$. Let W be the set of all vectors orthogonal to \mathbf{u}. (i) Geometrically, what is W ? (ii) Find the projection of $\mathbf{x}=[1,2,3]^{T}$ onto W. (iii) Find the distance from the vector $\mathbf{x}=[1,2,3]^{T}$ to the subspace W.
28. Can the SVD be used to determine if a matrix A is invertible? How?

