
Introduction to Matlab

1 Before We Begin...

Matlab physically resides on each of the computers in the Math Dept’s computer lab.

When you first log in: Using a computer in the Math/CS lab, go to the upper left
corner, and choose the top icon on the launch pad. You should get a search dialog, so you
can type:

matlab

You will then get the Matlab icon, so select that and Matlab will start. To keep the Matlab
icon on the launcher, go to the icon, right-click on the mouse, and select “Lock to Launcher”.

1.1 How does Matlab work?

You can make Matlab do computations three different ways:

• Type commands directly into the keyboard.

• Have your Matlab commands typed into a separate text file (called a script file), and
then have Matlab read these commands in. This is very nice- it gives you documentation
and allows you to run similar computations several times without having to re-type the
commands. We will typically use script files to do homework problems.

To turn in homework, you will “publish” your script, then upload the PDF to your
CLEO dropbox (See our course website for more information).

• Define your own functions by typing a separate text file (called an m-file).

Saving your work

Matlab keeps track of your past history while you are typing on the keyboard, but for answering
homework, it is best to use a script file, which is just a text file with Matlab commands on it.
More on this later.

Matlab has a very nice text editor that you can use to type out and save Matlab functions
and scripts- To access the editor, type edit in the Matlab command window.

2 Introductory Commands

1. Arithmetic

Matlab understands all of the basic arithmetic functions, +, -, *, /, ^ are addition,
subtraction, multiplication, division and exponentiation. Type them in just as you would
write them. For example, 25 would be typed as 2^5.

1

2. Trigonometric Functions

Matlab understands the basic trig functions sine, cosine and tangent as sin , cos , tan .
So, for example, the sine of 3.1 would be typed as: sin(3.1)

The number π is used so frequently that Matlab has its (approximate) value built-in as
the constant pi. For example, sin(π) is typed as sin(pi). Note that π uses a lowercase
“p”.

3. Exponential and Logarithmic Functions

Matlab does not have the number e built-in as a constant (like π). To take the number
e to a power, use the functional form: ex = exp(x) So if I want the number e, I would
type exp(1), and so on.

For the natural log (log base e), use the notation log. For example, ln(3) is written as
log(3). We will only use the natural log- if in the future you want a different base, look
up the log command by typing help log.

4. Complex Numbers and Arithmetic

Matlab has complex arithmetic built-in. Either the letter i or j can be used to represent√
−1, but a word of caution is in order here: You can only use i or j for

√
−1 ONLY if you

have not previously defined them. If you think you’re going to use complex numbers, do
not use the letter i for anything but complex arithmetic! Example: (0.2+3*i)*(5+2*i)
will multiply the two complex numbers together (using complex arithmetic).

2.1 Helpful Administrative Commands

The following commands are useful as you begin to use Matlab more and more:

• The up arrow key: Saves you from re-typing a previous command.

clear Clears the workspace of all variables

clc Clears the command window

whos List all variables, and their sizes.

ls or dir List the contents of the current directory.

doc command List the help file for the function command. For example, to get help on
the sine function, type doc sin. Also available: help

demo Lists all the demonstration programs that Matlab came with- This is fun to
look at. We don’t have all of them; you can go to Matlab’s website to look at more:
www.mathworks.com.

2

3 Arrays of Data

The array (or matrix) is the basic data type in Matlab. Data entry is straightforward - For
example, to type in the matrix A below,

A=[1 2 3 4; 5 6 7 8];

or as:

A=[1 2 3 4

5 6 7 8];

Note the use of the semicolon: Inside a matrix, the semicolon indicates the end of a row
(outside the matrix, the semicolon suppresses Matlab output). We access elements of the
matrix in the usual way- for example, the (2, 3) element of A is written as A(2,3) in Matlab.

Rows and columns are entered in a corresponding way, as either a 1 × n matrix or as a
n× 1 matrix.

Operations from Calc 3

The dot product and cross product are available. Here are a couple short examples:

x=[1;0;1]; y=[-1;2;3];

dot(x,y)

cross(x,y)

Special Commands: The colon operator

• a:b

Produces a vector of integers from a to b in a row. For example, x=2:9 puts x as a row
vector whose elements are the integers from 2 to 9.

• a:b:c

Produces the numbers from a to c by adding b each time. For example, 1 : 2 : 7 returns
the numbers 1, 3, 5, 7. Type the following into Matlab to see what you get: x=1:2:8 and
x=1:0.5:6

• linspace(a,b,c)

Produces c numbers evenly spaced from the number a to the number b (inclusive). For
example, x=linspace(2,5,40) produces 40 numbers evenly spaced beginning with 2
and ending with 5.

SHORTCUT: Leaving off the third number c will give you 100 numbers between a and
b (That is, c = 100 is the default value.)

3

3.1 Matlab commands associated with Arrays

• Random arrays (handy if you just need some quick data!) A=rand(m,n) Produces an
m×n array of random numbers (uniformly distributed) between 0 and 1. A=randn(m,n)
produces an m×n array of random numbers (with a normal distribution) with zero mean
and unit variance.

• A=zeros(m,n) Produces an m× n array of zeros.

• A=ones(m,n) Produces an m× n array of ones.

• A=eye(n) Produces an n× n identity matrix.

• A=repmat(B,m,n) Matrix A is constructed from matrix (or vector) B by replicating B
m times down and n times across.

Example: Let B =

[
1 2
3 4

]
. Then A=repmat(B,2,3) creates the array:

A =

1 2 1 2 1 2

3 4 3 4 3 4

1 2 1 2 1 2

3 4 3 4 3 4

Matrix Arithmetic

• Transposition is denoted by the single quote character ’. That is, A’ = AT . (CAUTION:
If A contains complex numbers, then A’ is the conjugate transpose of A, sometimes
denoted as A∗ = ĀT)

• Scalar addition and multiplication works by adding or multiplying an array by the
constant. Examples: A+ 5 or A ∗ 5 or 3 ∗B, etc.

NOTE: In linear algebra class, adding a matrix and a scalar would not be defined.

• Matrix Multiplication: Use the regular multiplication sign for standard matrix multipli-
cation. If A is m× n and B is n× p, then A*B is an m× p matrix, as we did in linear
algebra.

• Elementwise Multiplication. We can multiply and divide the elements of an array
A and an array B elementwise by A.*B and A./B

Exponentiation is done in a similar way. To square every element of an array A, we
would write: A.^2 This is the same as saying A.*A

• Typically, all functions should be written to act on a matrix elementwise, and Matlab’s
built in functions do (like sin(A) and exp(A). For the actual matrix functions of these
types, see the individual help files (doc exp, for example).

4

Accessing Submatrices

Let A be an m× n array of numbers. Then:
The notation: Yields:

A(i,j) The (i, j)th element

A(i,:) The entire ith row

A(:,j) The entire jth column

A(:,2:5) The 2d to fifth columns, all rows

A(1:4,2:3) A 4× 2 submatrix

Example: Create the array below using the repmat command:

A =

 1 1 1 1
2 2 2 2
3 3 3 3


SOLUTION:

x=1:3’;

A=repmat(x,1,4);

Example: What kind of an array would the following command produce?

A=randn(6,6);

B=A([1,3,6],[2,5])

SOLUTION: The first line produces a matrix of random numbers that is 6× 6, and stores the
result as A. The next line produces a 3 × 2 matrix consisting of the following elements, and
stores the result in B.

A(1, 2) A(1, 5)
A(3, 2) A(3, 5)
A(6, 2) A(6, 5)

Example: Given the matrix A below, find the pivot columns.

A=[1 -4 9 -7; -1 2 -4 1; 5 -6 10 7]

B=rref(A)

SOLUTION: The first two columns are the pivot columns.

Adding/Deleting Columns and Rows:

Its straightforward to insert and/or delete rows and columns into a matrix. Before doing it,
we define [] as ”the empty array”: the array with nothing in it.

In the following, let A be a 4× 5 array, let b be a 1× 5 row, and c be a 4× 1 column.
Examples of use (each of these are independent from the previous):

5

The command: Produces:
A(1,:)=[]; Delete the first row.
A([1,3],:)=[]; Delete rows 1 and 3.
A(:,3)=[]; Delete column 3.
A(:,1:2:5)=[]; Delete the odd columns.
A(1,:)=b; Put b as row 1.
A(:,6)=c; Add c as the last column.
d=[c , A(:,1:3)]; d is c and columns 1− 3 of A.
A=[A(:,1), c, A(:,2:5)]; Insert c as column 2 of A, others shift 1 over.
A=[A(1,:); b; A(2:4,:)]; Insert b as row 2 of A, others shifted 1 down.

3.2 Exercises

1. What is the Matlab command to create the array x which holds the integers: 2, 5, 8, 11, . . . 89

2. (Referring to the array above) What would the Matlab command be that zeros out the
even-numbered indices (That is, x(2), x(4), x(6), . . .)?

3. What is the purpose of the semicolon at the end of a line?

4. If you type the following, you get an error. Why? (Hint: I’m trying to get a vector y

where each element is the square of the element in x):

x=[1 2 3 4];

y=x^2;

4 Basic Plots

Here’s a quick example to get us started:

x=linspace(-pi,3*pi,200);

y=sin(x);

plot(x,y);

You’ll see that we had to create a domain array and a range array for the function. We then
plot the arrays. For example,

plot([1,2],[3,4]);

will plot a line segment between the points (1, 3) and (2, 4). So, Matlab’s plotting feature is
drawing small line segments between data points in the plane.

4.1 Examples

1. Matlab can also plot multiple functions on one graph. For example:

6

x1=linspace(-2,2);

y1=sin(x1);

y2=x1.^2;

x2=linspace(-2,1);

y3=exp(x2);

plot(x1,y1,x1,y2,x2,y3);

produces a single plot with all three functions.

2. plot(x1,y1,’*-’);

Plots the function y1, and also plots the symbol * where the data points are.

3. plot(x1,y1,’k*-’,x2,y3,’r^-’);

Plots the function y1 using a black (k) line with the asterisk at each data point, PLUS
plots the function y2 using a red line with red triangles at each data point.

The following lists all of the built in colors and symbols that Matlab can use in plotting:
(NOTE: You can see this list anytime in Matlab by typing: help plot)

Code Color Symbol
y yellow . point
m magenta o circle
c cyan x x-mark
r red + plus
g green − solid
b blue ∗ star
w white : dotted
k black −. dashdot

−− dashed

4. The following sequence of commands also puts on a legend, a title, and relabels the x−
and y−axes: Try it!

x=linspace(-2,2);

y1=sin(x);

y2=x.^2;

plot(x,y1,’g*-’,x,y2,’k-.’);

title(’Example One’);

legend(’The Sine Function’,’A Quadratic’);

xlabel(’Dollars’);

ylabel(’Sense’);

5. Other Things: If you look at the plotting window from the last example, you’ll see lots
of things that you can do. For example, there’s a zoom in and a zoom out feature. You
can also edit the colors and symbols of your plot, and the title, legend and axis labels.
Try them out!

7

6. In our last exercise, we’ll look at a sound file. (Before you begin, you might clear
everything by using clear and clc. If you have multiple graphs open, you can close
them all by using close all)

load handel %Loads in variables y and Fs

plot(y) %This is the sound file

soundsc(y) %Play the sound sample

y1=y; %Put the sound sample into variable y1

load laughter

“Laughter” is loaded into variable y now (“Handel” was put into y1). Try to add the
sounds together and listen to the result. NOTE: Addition is only defined for two arrays
of the same size.

Final note: Feel free to explore Matlab’s help features (use the “help” button at the top
of the window). There are many cool demos!

8

