Dynamical System

- A set of points and a rule.

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$
- Starting with x_{0}, we have:

$$
x_{0}
$$

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$
- Starting with x_{0}, we have:

$$
x_{0} \quad x_{1}=f\left(x_{0}\right)
$$

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$
- Starting with x_{0}, we have:

$$
x_{0} \quad x_{1}=f\left(x_{0}\right) \quad x_{2}=f\left(f\left(x_{0}\right)\right)
$$

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$
- Starting with x_{0}, we have:

$$
x_{0} \quad x_{1}=f\left(x_{0}\right) \quad x_{2}=f\left(f\left(x_{0}\right)\right) \quad x_{3}=f\left(f\left(f\left(x_{0}\right)\right)\right)
$$

and so on...

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$
- Starting with x_{0}, we have:

$$
x_{0} \quad x_{1}=f\left(x_{0}\right) \quad x_{2}=f\left(f\left(x_{0}\right)\right) \quad x_{3}=f\left(f\left(f\left(x_{0}\right)\right)\right)
$$

and so on...

- $x_{0}, x_{1}, x_{2}, \cdots$ is called the orbit of x_{0}.

Dynamical System

- A set of points and a rule.
- For function iteration, $x_{i+1}=f\left(x_{i}\right)$
- Starting with x_{0}, we have:

$$
x_{0} \quad x_{1}=f\left(x_{0}\right) \quad x_{2}=f\left(f\left(x_{0}\right)\right) \quad x_{3}=f\left(f\left(f\left(x_{0}\right)\right)\right)
$$

and so on...

- $x_{0}, x_{1}, x_{2}, \cdots$ is called the orbit of x_{0}.
- Question: What is the long term behavior of the orbit?

$$
\lim _{t \rightarrow \infty} x_{t}=\lim _{t \rightarrow \infty} f^{(t)}\left(x_{0}\right)
$$

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do?

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$.

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$. Orbits don't change.

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$. Orbits don't change.
These are the Equilibrium Solutions:

$$
x=f(x)
$$

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$. Orbits don't change.
These are the Equilibrium Solutions:

$$
x=f(x) \quad x=x^{2}
$$

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$. Orbits don't change.
These are the Equilibrium Solutions:

$$
x=f(x) \quad x=x^{2} \quad x^{2}-x=0
$$

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$. Orbits don't change.
These are the Equilibrium Solutions:

$$
x=f(x) \quad x=x^{2} \quad x^{2}-x=0 \quad x(x-1)=0
$$

Example 1

Let $x_{0}=\frac{1}{2}$, and $f(x)=x^{2}$. Then:

i	0	1	2	3	\cdots
x_{i}	$1 / 2$	$1 / 4$	$1 / 16$	$1 / 256$	\cdots

This orbit seems to converge to zero.
What will the orbit of $x_{0}=2$ do? (Diverge)
Let $x_{0}=0$ and $x_{0}=1$. Orbits don't change.
These are the Equilibrium Solutions:

$$
x=f(x) \quad x=x^{2} \quad x^{2}-x=0 \quad x(x-1)=0 \quad x=0,1
$$

Summary of the dynamics using $f(x)=x^{2}$ and the real line:
If $0<x_{0}<1$

Summary of the dynamics using $f(x)=x^{2}$ and the real line:
If $0<x_{0}<1 \quad$ then $\quad x_{i} \rightarrow 0$ as $i \rightarrow \infty$

Summary of the dynamics using $f(x)=x^{2}$ and the real line:

$$
\text { If } 0<x_{0}<1 \quad \text { then } \quad x_{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

And

$$
\text { If } x_{0}>1
$$

Summary of the dynamics using $f(x)=x^{2}$ and the real line:

$$
\text { If } 0<x_{0}<1 \quad \text { then } \quad x_{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

And

$$
\text { If } x_{0}>1 \quad \text { then } \quad x_{i} \rightarrow \infty \text { as } i \rightarrow \infty
$$

Summary of the dynamics using $f(x)=x^{2}$ and the real line:

$$
\text { If } 0<x_{0}<1 \quad \text { then } \quad x_{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

And

$$
\text { If } x_{0}>1 \quad \text { then } \quad x_{i} \rightarrow \infty \text { as } i \rightarrow \infty
$$

The equilibrium $x_{0}=0$ is

Summary of the dynamics using $f(x)=x^{2}$ and the real line:

$$
\text { If } 0<x_{0}<1 \quad \text { then } \quad x_{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

And

$$
\text { If } x_{0}>1 \quad \text { then } \quad x_{i} \rightarrow \infty \text { as } i \rightarrow \infty
$$

The equilibrium $x_{0}=0$ is stable

Summary of the dynamics using $f(x)=x^{2}$ and the real line:

$$
\text { If } 0<x_{0}<1 \quad \text { then } \quad x_{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

And

$$
\text { If } x_{0}>1 \quad \text { then } \quad x_{i} \rightarrow \infty \text { as } i \rightarrow \infty
$$

The equilibrium $x_{0}=0$ is stable
The equilibrium $x_{0}=1$ is

Summary of the dynamics using $f(x)=x^{2}$ and the real line:

$$
\text { If } 0<x_{0}<1 \quad \text { then } \quad x_{i} \rightarrow 0 \text { as } i \rightarrow \infty
$$

And

$$
\text { If } x_{0}>1 \quad \text { then } \quad x_{i} \rightarrow \infty \text { as } i \rightarrow \infty
$$

The equilibrium $x_{0}=0$ is stable
The equilibrium $x_{0}=1$ is unstable

Example 2: Markov Chains

Markov chains can be used to simulate transitions between states using probabilities.

Example 2: Markov Chains

Markov chains can be used to simulate transitions between states using probabilities.

"If today sunny, the probability of sunny tomorrow is 80%, and the probability of rain is 20% ".

Example 2: Markov Chains

Markov chains can be used to simulate transitions between states using probabilities.

"If today sunny, the probability of sunny tomorrow is 80%, and the probability of rain is 20% ".
"If rainy today, the probability of rainy tomorrow is 40%, and the probability of sun is 60%."

Example 2: Markov Chains

Markov chains can be used to simulate transitions between states using probabilities.

"If today sunny, the probability of sunny tomorrow is 80%, and the probability of rain is 20% ".
"If rainy today, the probability of rainy tomorrow is 40%, and the probability of sun is 60%."

Using a random choice:
S S R R S R R R S R S S S R S R R S S S

Example 2: Markov Chains

Markov chains can be used to simulate transitions between states using probabilities.

"If today sunny, the probability of sunny tomorrow is 80%, and the probability of rain is 20% ".
"If rainy today, the probability of rainy tomorrow is 40%, and the probability of sun is 60%."

Using a random choice:
S S R R S R R R S R S S S R S R R S S S
Using a Markov Chain:
R S S S S S S S R S R R S S S S S R S S S

You can track your moods...

- C C-- C C C C C - S S-- C C C C C C

You might model the economy...

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.".

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get".

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get"- "to get" could be followed by

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get" - "to get" could be followed by "down."

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get" - "to get" could be followed by "down." or "rid"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get"- "to get" could be followed by "down." or "rid" or "dressed"

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get"- "to get" could be followed by "down." or "rid" or "dressed"Choose "down."

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get"- "to get" could be followed by "down." or "rid" or "dressed" Choose "down."
- "down." has a period, which finishes phrase.

Markov Chain Simulated Conversation

First, get a large sample of writing (twitter conversations, Project Gutenberg).
Find transition probabilities.
Put the strings of words together!
Example:

- "I like" could be followed by "turtles" or "to" or "dogs.". Choose "to".
- "I like to" - "like to" could be followed by "know" or "toy" or "get". Choose "get".
- "I like to get"- "to get" could be followed by "down." or "rid" or "dressed" Choose "down."
- "down." has a period, which finishes phrase.

I like to get down.

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we
all

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we
all
have

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we
all
have
heard

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we
all
have
heard
people

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we
all
have
heard
people
believe

Markov Chain Poetry

A "snowball" is a poem in which each line is a single word, each word is one letter longer.
(Search for "Nossidge snowball" - His code available online)

0
we
all
have
heard
people
believe
anything

Markov Chain Poetry

i
am
the
dawn
light
before
anybody
expected
something
disorderly

Some definitions

- A vector with positive entries that sum to 1 :

Some definitions

- A vector with positive entries that sum to 1: Probability Vector
- A matrix M with columns that are probability vectors is a

Some definitions

- A vector with positive entries that sum to 1 : Probability Vector
- A matrix M with columns that are probability vectors is a stochastic matrix Example:

Some definitions

- A vector with positive entries that sum to 1: Probability Vector
- A matrix M with columns that are probability vectors is a stochastic matrix
Example:

$M=$| | From | | |
| ---: | ---: | ---: | ---: |
| | 1 | 2 | 3 |
| 1 | 0.7 | 0.3 | 0.1 |
| To: 2 | 0.2 | 0.5 | 0.0 |
| 3 | 0.1 | 0.2 | 0.9 |

The 0.3 entry means there is a probability of 30% of going to state 1 from state 2.

- A stochastic matrix is regular if there is a k so that P^{k} has all non-negative values. (The example is regular, if you check P^{2}).

Markov Chain Dynamics

EXAMPLE: Define our state vector as:

$$
\mathbf{x}=\left[\begin{array}{c}
\text { City } \\
\text { Suburbs }
\end{array}\right]
$$

Markov Chain Dynamics

EXAMPLE: Define our state vector as:

$$
\mathbf{x}=\left[\begin{array}{c}
\text { City } \\
\text { Suburbs }
\end{array}\right]
$$

Define the transition matrix:

	From	
	City	Subs
To City	0.95	0.03
To Subs	0.05	0.97

Markov Chain Dynamics

EXAMPLE: Define our state vector as:

$$
\mathbf{x}=\left[\begin{array}{c}
\text { City } \\
\text { Suburbs }
\end{array}\right]
$$

Define the transition matrix:

	From	
	City	Subs
To City	0.95	0.03
To Subs	0.05	0.97

The dynamics: $\mathbf{x}_{k}=M^{k} \mathbf{x}_{0}$.

If 60% of the population is in the city, 40% in the suburbs, we can compute the percentages for next year:

$$
\begin{gathered}
\mathbf{x}_{1}=\left[\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right]\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=M \mathbf{x}_{0}=\left[\begin{array}{l}
0.582 \\
0.418
\end{array}\right] \\
\mathbf{x}_{2}=\left[\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right]\left[\begin{array}{l}
0.582 \\
0.418
\end{array}\right]=M^{2} \mathbf{x}_{0}=\left[\begin{array}{l}
0.565 \\
0.435
\end{array}\right]
\end{gathered}
$$

and so on...

If 60% of the population is in the city, 40% in the suburbs, we can compute the percentages for next year:

$$
\begin{gathered}
\mathbf{x}_{1}=\left[\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right]\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=M \mathbf{x}_{0}=\left[\begin{array}{l}
0.582 \\
0.418
\end{array}\right] \\
\mathbf{x}_{2}=\left[\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right]\left[\begin{array}{l}
0.582 \\
0.418
\end{array}\right]=M^{2} \mathbf{x}_{0}=\left[\begin{array}{l}
0.565 \\
0.435
\end{array}\right]
\end{gathered}
$$

and so on...
If the orbit does converge, it will converge to a fixed point.

If 60% of the population is in the city, 40% in the suburbs, we can compute the percentages for next year:

$$
\begin{gathered}
\mathbf{x}_{1}=\left[\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right]\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]=M \mathbf{x}_{0}=\left[\begin{array}{l}
0.582 \\
0.418
\end{array}\right] \\
\mathbf{x}_{2}=\left[\begin{array}{ll}
0.95 & 0.03 \\
0.05 & 0.97
\end{array}\right]\left[\begin{array}{l}
0.582 \\
0.418
\end{array}\right]=M^{2} \mathbf{x}_{0}=\left[\begin{array}{l}
0.565 \\
0.435
\end{array}\right]
\end{gathered}
$$

and so on...
If the orbit does converge, it will converge to a fixed point.
Definition: x is fixed if $x=f(x)$.

In this context, \mathbf{x} is fixed if

$$
\mathbf{x}=M \mathbf{x}
$$

In this context, \mathbf{x} is fixed if

$$
\mathbf{x}=M \mathbf{x} \quad M \mathbf{x}-\mathbf{x}=\overrightarrow{0}
$$

In this context, \mathbf{x} is fixed if

$$
\mathbf{x}=M \mathbf{x} \quad M \mathbf{x}-\mathbf{x}=\overrightarrow{0} \quad(M-I) \mathbf{x}=\overrightarrow{0}
$$

For example,

$$
\begin{aligned}
&(M-I) \mathbf{x}=\overrightarrow{0} \Rightarrow\left[\begin{array}{cc}
0.95-1 & 0.03 \\
0.05 & 0.97-1
\end{array}\right] \mathbf{x}=\overrightarrow{0} \\
& {\left[\begin{array}{rr}
-0.05 & 0.03 \\
0.05 & -0.03
\end{array}\right] \mathbf{x}=\overrightarrow{0} }
\end{aligned}
$$

Therefore, if $\mathbf{x}=[c, s]^{T}$, then:

$$
\begin{gathered}
-5 c+3 s=0 \Rightarrow \begin{array}{l}
c=3 / 5 s \\
s=s
\end{array} \\
=s\left[\begin{array}{c}
3 / 5 \\
1
\end{array}\right]=s_{1}\left[\begin{array}{l}
3 \\
5
\end{array}\right]=s_{2}\left[\begin{array}{c}
3 / 8 \\
5 / 8
\end{array}\right]
\end{gathered}
$$

If $3 / 8$ of the population is in the city, $5 / 8$ in the suburbs, then the populations will remain unchanged in time.

HOMEWORK: Exercises 1, 2, 3, 9, 11, 12

