
Review Questions: Sections 1.1-1.9 (exc 1.6)

The first exam will cover sections 1.1-1.5, 1.7-1.9. You should be familiar with the homework. Typical
exam-style questions are given below. There are many more questions here than will be on the exam, which
should take about 50 minutes.

No calculators will be allowed on the exam.

Definitions and Basic Theorems

Definitions should be memorized, and you should be able to give the result of the basic theorems below,
given their hypotheses as below.

1. Finish the definition:

(a) A linear combination of vectors {v1, . . . ,vn} is:

(b) A set of vectors {v1, . . . ,vn} are said to be linearly independent if:

(c) The span of a set of vectors {v1, . . . ,vn} is:

(d) A system of equations is inconsistent if:

(e) A system of equations is homogeneous if:

(f) Two matrices are row equivalent if:

(g) A transformation T : X → Y is said to be linear if:

(h) A transformation T : X → Y is said to be one-to-one if:

(i) Give the definition of Ax =

2. What information about T : IRn → IRm do we need to know in order to compute the standard matrix
for the transformation?

3. Fill in the blanks for the Existence and Uniqueness Theorem (Hint: Think “pivots”)

• A linear system is consistent if and only if:

• Furthermore, if the system is consistent, the solution is unique if:

4. Give three statements that are logically equivalent to saying that A has a pivot in every row. I’ll give
some hints so you can fill in the blanks:

• For each b ∈ IRm, the equation Ax = b

• of A span IRm

• Each b is a linear combination of of A

• The mapping x→ Ax will be (choose from 1-1, onto, both or neither)

5. Similar to the last problem, give two statements that are logically equivalent to saying that: A has a
pivot in every column.

6. Suppose A is m× n with m > n. Is it possible that the mapping x→ Ax is 1-1? Onto? (Explain).

7. Same question, but let A be m× n with m < n.
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Computational Questions

1. Find the row reduced echelon form of the matrix A given below. Be sure to show all your work:

A =

 1 −7 0 6 5
0 0 1 −2 −3
−1 7 −4 2 7


2. If the matrix given above was actually an augmented matrix, use your row reduced echelon form to

give the solution to the system.

3. Do the three lines x1−4x2 = 1, 2x1−x2 = −3 and −x1−3x2 = 4 have a common point of intersection?
Explain.

4. Let a3 = 2a1 − 3a2. Let A = [a1 a2 a3]. If A is 3 × 3 with 2 pivots, write the solution to Ax = 0 in
parametric form.

5. Write the equation of a plane that represents the span of the column vectors (written as rows to save
space): [1, 2, 3, 4], [1,−1,−1, 1] and goes through the point [3, 0, 0, 1].

6. Find the general solution (in parametric vector form) to the system:

x1 + 3x2 + x3 + x4 = −1

−2x1 − 6x2 − x3 = 5

x1 + 3x2 + 2x3 + 3x4 = 2

7. Suppose the solution set of a certain system of linear equations is given by x1 = 5+4x4, x2 = −2+7x4

with x3 = 2 + x4 and x4 is a free variable.

(a) Use vectors to describe the solution set as a (parametric) line in IR4.

(b) Was the original system homogeneous? If not, give the solution to the homogeneous system of
equations, if you have enough information.

8. Show that the mapping T is not linear: T

([
x1

x2

])
=

[
4x1 − 2x2

3x2 + 1

]
9. Determine if the following mapping is linear: T (x1, x2) = x2

1 + 3x2 (Use the definition!)

10. Given the matrix A below, explain whether or not the system Ax = b has a solution in terms of h. If
there are restrictions on b, give them.

A =

[
1 −3
2 −h

]
11. Let A be a 3 × 4 matrix, let y1,y2 be vectors, and let w = y1 + y2. Suppose that y1 = Ax1 and

y2 = Ax2 for some vectors x1 and x2.

(a) What size must y1,y2,x1,x2 be?

(b) Does Ax = w have a solution? Why or why not?

12. Suppose that:

T

([
1
2

])
=

[
−3

0

]
, and T

([
−2

1

])
=

[
1
2

]
Find a matrix A so that T (x) = Ax.

13. Determine the matrix for the linear transformation T given below: T (x1, x2, x3, x4) = 3x1− 4x2 + 8x4

2



14. Let T : IR3 → IR2, where T (e1) = (1, 4), T (e2) = (−2, 9), and T (e3) = (3,−8). Find a matrix A so
that T (x) = Ax.

15. Let T : IR2 → IR3 so that T (x) = Ax, where

A =

 1 1
−2 −1
−1 −3


Is T 1-1? Explain. Is T onto? Explain.

16. Suppose we want to determine a quadratic function f(x) = a0 + a1x+ a2x
2 that interpolates the data

(1, 1), (−1, 2), and (2, 3). Write down the system of equations (and the corresponding matrix equation)
we need to solve (do not actually solve the system) to find the polynomial.

Discussion Questions

These types of questions are more theoretical in nature. You do not have to refer to specific theorem numbers
in your justifications, but you should note the existence of a theorem, if there is one to help. You should not
argue “naively”, or from first principles- Use the material that we have learned.

1. Suppose A is 3 × 3 an y is a vector in IR3 such that the equation Ax = y does not have a solution.
Does there exist a vector z in IR3 such that Ax = z has a unique solution?

2. Let A be n× n. If the equation Ax = 0 has only the trivial solution, do the columns of A span IRn?
Why or why not? Is your answer different if A is n× p?

3. Let T be a linear transformation. Show that if {v1,v2,v3} are linearly dependent vectors, then
{T (v1) , T (v2) , T (v3)} are linearly dependent vectors.

4. If H is 7× 7 matrix and Hx = v is consistent for every v in IR7, then is it possible for Hx = v to have
more than one solution for some v ∈ IR7? Why or why not?

5. Suppose that the third column of B is the sum of the first two columns, which are not linear combi-
nations of each other. If B is 4× 3, give the matrix that should be the RREF of B.

6. Suppose that the full solution to Ax = b is given by

x =

 4
0
0

+ c1

 2
1
0

+ c2

 5
0
1


(a) Give the RREF of A, if A is 3× 3.

(b) If the following row operations were applied to A (in order):

3R1 + R2 → R2 − 5R1 + R3 → R3

Find the matrix A and the vector b.

True or False (and explain)?

1. If A and B are row equivalent, then they have the same row reduced echelon form.

2. If vectors v1 and v2 are linearly dependent, it is still possible that {v1,v2,v3} to be linearly independent
for some v3.
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3. A mapping T : IRn → IRm is one-to-one if each vector in IRn maps onto a unique vector in IRm.

4. If A is 5× 5, and the columns of A do not span IR5, it is possible that A is invertible.

5. A linear transformation preserves the operations of vector addition and scalar multiplication.

6. If Ax = b has more than 1 solution, so does Ax = 0.

7. In some cases, it is possible for four vectors to span IR5.

8. If A,B are row equivalent m× n matrices, and if the columns of A span IRm, then so do the columns
of B.

9. The span{u,v} is always visualized as a plane through the origin.
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