Content for Exam 2, Linear Algebra

Exam 2 will cover material from 2.1-2.3 (Inverse matrices), 3.1-3.3 (determinants), 4.1-4.6 (vector spaces). There may be some material from 4.7- That will be announced before the review on Monday.

Just like last time, no notes or calculators will be allowed, and you have 50 minutes. There was a typo for the date of the exam- It is on Wednesday, March 8th.

Sections 2.1-2.3

1. Skills

- Compute the inverse of a 2×2 matrix A directly (Theorem 4)
- Compute the inverse of an $n \times n$ matrix using row reduction.
- Compute the elementary matrix for a given row operation.
- Solve a matrix equation using inverses.

2. Know the Invertible Matrix Theorem (Theorem 8)

That is, you do not need to be able to list all of the parts, but given a prompt, be able to finish the statement so that it is equivalent to A being invertible. For example, "What is true about the columns of A?" Answer might be: Columns are linearly independent, Columns are pivot columns, Columns $\operatorname{span} \mathbb{R}^{n}$ (any of these).
3. Theorems: Understand Theorem 5, 6, 7 (be able to compute using them). You do not need to know Theorem 9 (p 131).

Sections 3.1-3.3

1. Skills

- Be able to compute determinants using a cofactor expansion along any row or column.
- Compute a determinant for upper or lower triangular matrix.
- Be able to compute a determinant by first performing row reduction.
- Use Cramer's Rule to solve a system,
- Compute the volume of a parallelepiped, area of a parallelogram.

2. Properties of the determinant. For the following, assume E, A, B are square matrices. For the last item, assume A is invertible.
(a) Elementary matrices:

- E corresponding to a row swap: $\operatorname{det}(E)=-1$
- E corresponding to multiplying a row by $k: \operatorname{det}(E)=k$
- E corresponding to $k r_{j}+r_{i} \rightarrow r_{i}$: $\operatorname{det}(E)=1$
(b) General properties:
- A is invertible only if $\operatorname{det}(A) \neq 0$.
- If A is $n \times n$, then $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
- $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$

3. Theorems

- Theorems 1, 2, 3 and 9 are used in computation. You do not need to memorize these, you can just use them.
- You should know Theorems $4,5,6,7$. These are summarized in the properties, and Theorem 7 is Cramer's Rule.
- Theorem 8 (A formula for A^{-1} involving the "adjoint" will not be on the exam, neither will the adjoint. Cofactors (book notation: $C_{i j}$) will be used in computing determinants.
- Theorem 10 will not be on the exam (the area of an image).

Vector Spaces, (4.1-4.6)

1. You don't need to memorize the 10 axioms on page 217.
2. Be familiar with some template vector spaces: $\mathbb{R}^{n}, \mathbb{P}_{n}, \mathbb{P}, C[a, b], M_{m \times n}$
3. Know these definitions: A subspace, a linearly independent set, a basis, the coordinates of \mathbf{x} (with respect to a given basis), the dimension of a subspace, an isomorphism, the rank of a matrix. The four fundamental subspaces associated with a matrix A (be able to define each one), the kernel of a transformation, the change of coordinates matrix. A steady state vector for a Markov Chain. A regular stochastic matrix.
4. Theorems for computation: $1,4,5,6,7,9,10,11,13,18$ (from 4.9).

These are theorems that you should know for computational purposes (you might think of them as "basic facts").
5. Theorems to know: 2 (Null space is a subspace), 3 (Col space is a subspace), 8 (Isormorphism for Isomorphic Spaces), 12 (The basis theorem), 14 (The rank theorem).
6. Skills:

- Prove that a given set is or is not a subspace.
- Given a matrix A, be able to compute a basis for the column space, the null space and the row space (not the null space of A^{T}).
- Find the kernel of a given transformation and describe the range of the transformation.
- Understand how row operations effect the the 4 fundamental subspaces (for example, the subspaces for a matrix A versus its RREF, B).
- Row operations do not effect the relationship among the columns of A, but they do effect the column spaces (the column spaces of A, B may not be the same).
- Row operations do effect the relationship among the rows of A, but the row spaces of A, B are the same.
- Row operations do not effect the set of solutions to $A \mathbf{x}=\mathbf{0}$, so the null spaces of A, B are the same.
- Find the coordinates of a vector given a basis (both in \mathbb{R}^{n} using the change of coordinates matrix, and for vector spaces that are not \mathbb{R}^{n}, like \mathbb{P}_{n}.
- Be able to compute the dimension of a vector space.
- Be able to compute the rank of a matrix. Use that to compute the dimensions of the four fundamental subspaces.
- Understand what it means to say that two vectors spaces are isomorphic.
- Theorem: Any finite dimensional vector space V (with dimension n) is isomorphic to \mathbb{R}^{n} using the coordinate mapping as the isomorphism.

4.7, if time

Given bases \mathcal{B} and \mathcal{C}, find a formula that will, given the coordinates in \mathcal{B}, give you the coordinates with respect to \mathcal{C}.

