
Solutions to the Review 4 Exercises

1. Find the least squares solution to Ax = b, given A and b below. Note that the columns
of A are orthogonal, and use that fact.

A =

 2 −1
2 2
1 −2

 b =

 1
2
1


SOLUTION: Since the columns of A are orthogonal, we can compute the b̂ directly.

b̂ =
bTa1

aT1 a1

a1 +
bTa2

aT2 a2

a2 =
7

9
a1 +

1

9
a2 = Ax̂

so we can read x̂ off: [7/9, 1/9]T . (See page 414 for another example).

2. Find the line that best fits the data: (−1,−1), (0, 2), (1, 4), (2, 5). Do this by first
finding a matrix equation that you will then find the least squares solution to (by
using the normal equations).

SOLUTION: The model equation is y = β0 + β1x, so the matrix equation is:
1 −1
1 0
1 1
1 2

[ β0β1
]

=


−1

2
4
5


Forming the normal equations, we have:

ATAc = ATy ⇒
[

3 1
1 10

] [
β0
β1

]
=

[
8

18

]
[
β0
β1

]
=

1

29

[
10 −1
−1 3

] [
8

18

]
=

1

29

[
62
46

]
3. Suppose A is m×n with linearly independent columns and b is in IRm. Use the normal

equations to produce a formula for b̂, the projection of b onto the column space of A.
(Hint: First find x̂ which does not require an orthogonal basis for Col(A).)

SOLUTION: Given Ax = b, we know that x̂ solves the least squares problem:

x̂ = (ATA)−1ATb

And that b̂ = Ax̂. Therefore, we get b̂ by multiplying both sides of our previous
equation by A:

b̂ = Ax̂ = A(ATA)−1ATb

Therefore, the matrix that sends b to b̂ is A(ATA)−1AT .

Side remark: If A was an invertible matrix, then this entire expression simplifies to I.
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4. Show that if x ∈ Null(A), then x ∈ Null(ATA).

SOLUTION: If x ∈ Null(A), then Ax = 0. Multiplying both sides by AT , we see that
ATAx = 0, so that x ∈ Null(ATA).

Show that if ATAx = 0, then ‖Ax‖ =?.

SOLUTION: Looking at the expression to the left, ‖Ax‖2 = (Ax · (Ax) = xTATAx.
Now, if

ATAx = 0

then
xTATAx = 0 ⇒ ‖Ax‖2 = 0

Use the above to show that, if x ∈ Null(ATA), then x ∈ Null(A).

SOLUTION: In the previous problem, we showed that if x ∈ Null(ATA), then ‖Ax‖ =
0. This implies that Ax = 0, or equivalently, that x ∈ Null(A).

Altogether, this problem is showing that the null spaces of A and ATA are the same!

5. Using the last problem, what can we conclude about the rank of A versus the rank of
ATA?

SOLUTION: If A is m×n, then the null spaces of A and ATA are the same subspaces
of IRn- thus they also have the same dimension. Therefore, the dimension of Row(A)
and Row(ATA) are the same, and therefore, the dimension of Col(A) and Col(ATA)
are the same. Therefore, A and ATA have the same rank.

6. Suppose I have a model equation: y = β0 + β1 sin(v) + β2 ln(w).

Given the following data, set up the matrix equation from which we could determine
a least squares solution for the β’s:

v w y
−1 2 1

1 1 2
0 3 −1
3 2 0

⇒


1 sin(−1) ln(2)
1 sin(1) ln(1)
1 sin(0) ln(3)
1 sin(3) ln(2)


 β0
β1
β2

 =


1
2
−1

0


Side Remark: In Matlab, you could solve this:

v=[-1 1 0 3]’; w=[2 1 3 2]’; y=[1 2 -1 0]’;

A=[ones(4,1), sin(v), log(w)];

beta=A\y;
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7. Given vectors u,v in the vector space IRn with the usual dot product as inner product,
show that the Pythagorean Theorem still holds. That is, if u and v are orthogonal to
each other, then:

‖u + v‖2 = ‖u‖2 + ‖v‖2

SOLUTION: Write out the left side in terms of the dot product, and expand.

‖u + v‖2 = (u + v) · (u + v) = u · u + u · v + v · u + v · v

Since u · v = 0, this expression reduces to

u · u + v · v = ‖u‖2 + ‖v‖2

8. Orthogonally diagonalize the symmetric matrix A =

[
7 2
2 4

]
.

SOLUTION: We notice that this matrix is symmetric. Find the eigenvalues first:

λ2 − Tr(A)λ+ det(A) = 0 ⇒ λ2 − 11λ+ 24 = 0 ⇒ (λ− 8)(λ− 3) = 0

For λ = 8, we solve the following (I’m just using the first equation since the two
equations should be constant multiples of each other):

(7− 8)v1 + 2v2 = 0 ⇒ v1 = 2v2
v2 = v2

⇒ v =
1√
5

[
2
1

]
Similarly, for λ = 3:

(7− 3)v1 + 2v2 = 0 ⇒ 4v1 + 2v2 = 0 ⇒ v1 = v1
v2 = −2v2

⇒ v =
1√
5

[
1
−2

]
Therefore, A = PDP T , where

P =
1√
5

[
2 1
1 −2

]
D =

[
8 0
0 3

]
(NOTE: The order of the columns should correspond to the order of the eigenvalues!)

9. True or False, and explain: For every non-zero vector v ∈ IRn, the matrix vvT is called
a projection matrix.

Generally, that would be false, but if v were a unit vector, then it would be true, since

Projv(x) =
vTx

vTv
v = v(vTx) = vvTx
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10. Show that, if A is symmetric, then any two eigenvectors from distinct eigenvalues are
orthogonal. Hint: Start with λ1v1 ·v2, and see if you can transform this into λ2v1 ·v2.

SOLUTION: Starting with the hint,

λ1v1 · v2 = (Av1) · v2 = vT1A
Tv2 = vT1 (Av2) = vT1 λ2v2 = λ2v1 · v2

Subtracting the right side:
(λ1 − λ2)v1 · v2 = 0

Since λ1 6= λ2, then v1 must be orthogonal to v2.

11. Suppose we have the matrix A = [1, 1, 1].

(a) What will the singular values of A be? (Try to compute them in the easiest
possible way).

SOLUTION: We can use either AAT or ATA. In this case, use AAT = 3. The
eigenvalue is 3, the others are 0. Therefore, there is one non-zero singular value
σ1 =

√
3.

(b) Find (by hand) the reduced SVD for the matrix A. See if you can do it without
any computation.

SOLUTION: The reduced SVD would look like:

[1, 1, 1] = 1 ·
√

3 ·

 ∗∗
∗

T

so we see that u1 = 1 and v1 = 1√
3
[1, 1, 1]T .

(c) Find a basis for the null space of A using the rest of the SVD that hasn’t been
computed yet (this one we’ll need to compute).

For the other two columns of V , we solve for the null space of [111], or:

v1 = −v2 − v3
v2 = v2
v3 = v3

⇒ v = v1

 −1
1
0

+ v2

 −1
0
1


Side Remark: The full SVD for the problem would be:

[1, 1, 1] = 1 · [
√

3, 0, 0]

 1/
√

3 −1
√

2 −1/
√

2

1/
√

3 1
√

2 0

1/
√

3 0 1/
√

2

T

12. Show that the eigenvalues of ATA are non-negative. Hint: Consider ‖Avi‖.
SOLUTION: Using the hint, we have

‖Avi‖2 = (Avi)
T (Avi) = vTi A

TAvi = λiv
T
i vi = λi
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Therefore, λi must be non-negative.

Side Remark: This was an important result so that we could define the singular values
as the square root of these eigenvalues.

13. Suppose the SVD was given as the following:

A =

 0.65 −0.75 0
0 0 1

0.75 0.65 0

 15.91 0 0
0 3.26 0
0 0 0

 −0.52 −0.62 −0.57
−0.27 0.76 −0.57
−0.80 0.14 0.57

T

(a) What is the rank of A? SOLUTION: The rank is the number of non-zero singular
values, so in this case, the rank is 2.

(b) Write a basis for the column space and null space of A.

SOLUTION: The column space is spanned by the first two columns of U , and the
null space is spanned by the last column of V .

(c) Write the matrix product for the pseudoinverse of A (you don’t need to multiply
it out).

SOLUTION: Symbolically (Matlab notation for the columns), it is

V (:, 1 : 2)Σ−1(1 : 2, 1 : 2)U(:, 1 : 2) −0.52 −0.62
−0.27 0.76
−0.80 0.14

[ 1
15.91

0
0 1

3.26

] 0.65 −0.75
0 0

0.75 0.65


14. Suppose A is square and invertible. Find the SVD of A−1.

SOLUTION: If A is square and invertible, then in the SVD for A:

A = UΣV T

the matrices U and V are orthogonal (so UUT = UTU = I, and similarly for V ):

A−1 = V


1
σ1

0 · · · 0

0 1
σ2

0 · · · 0
...

...
0 0 · · · 1

σn

UT

15. Show that if A is square, then |det(A)| is the product of the singular values of A.

SOLUTION:
A = UΣV T ⇒ det(A) = det(UΣV T )

Here is where we need all matrices to be square- So the determinant is defined:

det(A) = det(U)det(Σ)det(V )
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Since U and V are orthogonal, each of their determinants is ±1 (be sure that you can
prove this). Therefore,

det(A) = ±det(Σ) = ±σ1σ2 · · ·σn
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