4.1, 32 If H, K are subspaces, show that $H \cap K$ is also a subspace.

- Show that $H \cap K$ has the zero vector:

Since H, K are subspaces, then $\overrightarrow{0} \in H$ and $\overrightarrow{0} \in K$, so $\overrightarrow{0} \in H \cap K$.

- Show that $H \cap K$ is closed under addition:

Let $\mathbf{x}_{1}, \mathbf{x}_{2}$ be in $H \cap K$. That means that each is in H and each is in K. Since both vectors are in H (and H is a subspace), then $\mathbf{x}_{1}+\mathbf{x}_{2}$ is in H. Similarly, since both vectors are in K (and K is a subspace), then $\mathbf{x}_{2}+\mathbf{x}_{2}$ is in K. Therefore, the sum is also in $H \cap K$.

- Show that $H \cap K$ is closed under scalar multiplication:

Let $\mathbf{x} \in H \cap K$. We show that $c \mathbf{x}$ is in $H \cap K$ for all scalars c :
Since $\mathbf{x} \in H \cap K$, then $\mathbf{x} \in H$ and $\mathbf{x} \in K$. Since each of these are subspaces, $c \mathbf{x} \in H$ and $c \mathbf{x} \in K$. Therefore, $c \mathbf{x} \in H \cap K$.

The argument above does not work for unions-For example,

$$
H=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}, \quad K=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

Then $H \cap K=\{\overrightarrow{0}\}$, but the union (only being the two coordinate axes) would not be closed under addition- Adding the two basis vectors together, in fact, gives (1,1), which is not in H or in K.
4.2, 30 Let $T: V \rightarrow W$ be a linear transformation from vector space V to vector space W. Show that the range of T is a subspace of W.

NOTE: To show that something is in the range of T, we must show that it came from some vector in $V \ldots$

- Is $\overrightarrow{0}$ in the range of T ? Yes, since $T(\overrightarrow{0})=\overrightarrow{0}$, and V is a subspace (so the domain contains the zero vector).
- Is the range closed under addition?

Let $\mathbf{w}_{1}, \mathbf{w}_{2}$ be in the range of T. Then there are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ in V such that $T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}$. Now,

$$
\mathbf{w}_{1}+\mathbf{w}_{2}=T\left(\mathbf{v}_{1}\right)+T\left(\mathbf{v}_{2}\right)=T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)
$$

And, since V is a vector space, the sum $\mathbf{v}_{1}+\mathbf{v}_{2}$ is in V. Therefore, W is closed under addition.

- Is the range closed under scalar multiplication?

Let \mathbf{w} be in the range, so $\mathbf{w}=T(\mathbf{v})$, for some $\mathbf{v} \in V$. Since V is a subspace, then $c \mathbf{v}$ is in V for all scalars c, which tells us:

$$
c \mathbf{w}=c T(\mathbf{v})=T(c \mathbf{v})
$$

And W is closed under scalar multiplication.

