\#31 in 5.1

Let T be the transformation on \mathbb{R}^{2} that reflects points across some line through the origin. If A is the 2×2 matrix, find an eigenvalue and describe the eigenspace:

\#31 in 5.1

Let T be the transformation on \mathbb{R}^{2} that reflects points across some line through the origin. If A is the 2×2 matrix, find an eigenvalue and describe the eigenspace:

SOLUTION: The transformation leaves any point on the line fixed, so that if \mathbf{v} is any point on the line, then

$$
A \mathbf{v}=\mathbf{v}
$$

Therefore, $\lambda=1$ and the eigenspace is the line.

\#32 in 5.1

Let T be the transformation on \mathbb{R}^{3} that reflects points across some line through the origin. If A is the 3×3 matrix, find an eigenvalue and describe the eigenspace:

\#32 in 5.1

Let T be the transformation on \mathbb{R}^{3} that reflects points across some line through the origin. If A is the 3×3 matrix, find an eigenvalue and describe the eigenspace:

SOLUTION: Similar to the previous explanation, the action of T will leave any point on the line fixed:

$$
A \mathbf{v}=\mathbf{v}
$$

so again A has one eigenvalue $\lambda=1$ with the eigenspace being the line.

\#32 in 5.1

Let T be the transformation on \mathbb{R}^{3} that reflects points across some line through the origin. If A is the 3×3 matrix, find an eigenvalue and describe the eigenspace:

SOLUTION: Similar to the previous explanation, the action of T will leave any point on the line fixed:

$$
A \mathbf{v}=\mathbf{v}
$$

so again A has one eigenvalue $\lambda=1$ with the eigenspace being the line. The other eigenspace is the plane orthogonal to the line with complex evals.

