#31 in 5.1

Let T be the transformation on \mathbb{R}^2 that reflects points across some line through the origin. If A is the 2 \times 2 matrix, find an eigenvalue and describe the eigenspace:

#31 in 5.1

Let T be the transformation on \mathbb{R}^2 that reflects points across some line through the origin. If A is the 2 \times 2 matrix, find an eigenvalue and describe the eigenspace:

SOLUTION: The transformation leaves any point on the line fixed, so that if \mathbf{v} is any point on the line, then

$$A\mathbf{v} = \mathbf{v}$$

Therefore, $\lambda = 1$ and the eigenspace is the line.

#32 in 5.1

Let T be the transformation on \mathbb{R}^3 that reflects points across some line through the origin. If A is the 3×3 matrix, find an eigenvalue and describe the eigenspace:

#32 in 5.1

Let T be the transformation on \mathbb{R}^3 that reflects points across some line through the origin. If A is the 3×3 matrix, find an eigenvalue and describe the eigenspace:

SOLUTION: Similar to the previous explanation, the action of T will leave any point on the line fixed:

$$A\mathbf{v} = \mathbf{v}$$

so again A has one eigenvalue $\lambda = 1$ with the eigenspace being the line.

#32 in 5.1

Let T be the transformation on \mathbb{R}^3 that reflects points across some line through the origin. If A is the 3×3 matrix, find an eigenvalue and describe the eigenspace:

SOLUTION: Similar to the previous explanation, the action of T will leave any point on the line fixed:

$$A\mathbf{v} = \mathbf{v}$$

so again A has one eigenvalue $\lambda = 1$ with the eigenspace being the line. The other eigenspace is the plane orthogonal to the line with complex evals.