
Exam 2 Summary

The exam will cover material from Section 3.1 to 3.7 except for 3.6 (Variation of Parameters). Here is a
summary of that information.

Existence and Uniqueness:

Given the second order linear IVP,

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = v0

If there is an open interval I on which p, q, and g are continuous an contain t0, then there exists a unique
solution to the IVP, valid on I (and may contain the endpoints of I, if the functions are also continuous
there).

Structure and Theory (Mostly 3.2)

The goal of the theory was to establish the structure of solutions to the second order IVP:

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = v0

We saw that two functions form a fundamental set of solutions to the homogeneous DE if the Wronskian
is not zero at t0.

1. Vocabulary: Linear operator, general solution, fundamental set of solutions, linear combination.

2. Theorems:

� Abel’s Theorem.

If y1, y2 are solutions to y′′ + p(t)y′ + q(t)y = 0, then the Wronskian, W (y1, y2), is either always
zero or never zero on the interval for which the solutions are valid.

That is because the Wronskian may be computed as:

W (y1, y2)(t) = Ce−
∫

p(t) dt

� The Structure of Solutions to y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y
′(t0) = v0

Given a fundamental set of solutions to the homogeneous equation, y1, y2, then there is a solution
to the initial value problem, written as:

y(t) = C1y1(t) + C2y2(t) + yp(t)

where yp(t) solves the non-homogeneous equation.

In fact, if we have: y′′ + p(t)y′ + q(t)y = g1(t) + g2(t) + . . .+ gn(t),, we can solve by splitting the
problem up into smaller problems:

– y1, y2 form a fundamental set of solutions to the homogeneous equation.

– yp1
solves y′′ + p(t)y′ + q(t)y = g1(t)

– yp2
solves y′′ + p(t)y′ + q(t)y = g2(t)

and so on..

– ypn
solves y′′ + p(t)y′ + q(t)y = gn(t)

and the full solution is: y(t) = C1y1 + C2y2 + yp1
+ yp2

+ . . .+ ypn
.
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Finding the Homogeneous Solution

We had two distinct equations to solve-

ay′′ + by′ + cy = 0 or y′′ + p(t)y′ + q(t)y = 0

First we look at the case with constant coefficients, then we look at the more general case.

Constant Coefficients

To solve
ay′′ + by′ + cy = 0

we use the ansatz y = ert. Then we form the associated characteristic equation:

ar2 + br + c = 0 ⇒ r =
−b±

√
b2 − 4ac

2a

so that the solutions depend on the discriminant, b2 − 4ac in the following way:

� b2 − 4ac > 0 ⇒ two distinct real roots r1, r2. The general solution is:

yh(t) = c1e
r1t + c2e

r2t

If a, b, c > 0 (as in the Spring-Mass model) we can further say that r1, r2 are negative. We would say
that this system is OVERDAMPED.

� b2 − 4ac = 0 ⇒ one real root r = −b/2a. Then the general solution is:

yh(t) = e−(b/2a)t (C1 + C2t)

If a, b, c > 0 (as in the Spring-Mass model), the exponential term has a negative exponent. In this case
(one real root), the system is CRITICALLY DAMPED.

� b2 − 4ac < 0 ⇒ two complex conjugate solutions, r = α± iβ. Then the solution is:

yh(t) = eαt (C1 cos(βt) + C2 sin(βt))

If a, b, c > 0, then α = −(b/2a) < 0. In the case of complex roots, the system is said to the UNDER-
DAMPED. If α = 0 (this occurs when there is no damping), we get pure periodic motion, with period
2π/β or circular frequency β.

Solving the more general case

We had two methods for solving the more general equation:

y′′ + p(t)y′ + q(t)y = 0

but each method relied on already having one solution, y1(t). Given that situation, we can solve for y2 (so
that y1, y2 form a fundamental set), by one of two methods:

� By use of the Wronskian: There are two ways to compute this,

– W (y1, y2) = Ce−
∫

p(t) dt (This is from Abel’s Theorem)

– W (y1, y2) = y1y
′
2 − y2y

′
1

Therefore, these are equal, and y2 is the unknown: y1y
′
2 − y2y

′
1 = Ce−

∫
p(t) dt

� Reduction of order, where y2 = v(t)y1(t). Now substitute y2 into the DE, and use the fact that y1
solves the homogeneous equation, and the DE reduces to:

y1v
′′ + (2y′1 + py1)v

′ = 0

NOTE: I’d like for you to understand the technique- I’ll give you the substitution if needed.
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Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters (but Variation
of Parameters won’t be on the exam).

Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay′′+by′+cy, acting
on certain classes of functions, returns the same class. In summary, the table from the text:

if gi(t) is: The ansatz ypi is:
Pn(t) ts(a0 + a1t+ . . . ant

n)
Pn(t)e

αt tseαt(a0 + a1t+ . . .+ ant
n)

Pn(t)e
αt sin(µt) or cos(µt) tseαt ((a0 + a1t+ . . .+ ant

n) sin(µt)
+ (b0 + b1t+ . . .+ bnt

n) cos(µt))

The ts term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or t2 so
that no term of the ansatz is included as a term of the homogeneous solution.

The Oscillator Model (3.7)

Given
mu′′ + γu′ + ku = F (t)

where m is mass, γ is the damping constant, k is the spring constant (Hooke’s law).
We should be able to determine the constants from a given setup for a spring-mass system. Once that’s

done, be able to analyze the spring-mass system in some particular cases:

1. Unforced (The homogeneous equation, F (t) = 0)

(a) No damping: Natural frequency is
√
k/m

(b) With damping: Underdamped, Critically Damped, Overdamped

2. Periodic Forcing1

(a) With no damping: Determine when Beating and Resonance occur.

u′′ + ω2u = F cos(ω0t)

“Beating” occurs when ω is close to ω0.

The circular frequency for one beat is |ω0 − ω|. The amplitude of one beat: 2F/(ω2
0 − ω2).

“Resonance” occurs when ω = ω0. Resonance forces the solution to become unbounded (can be
very bad in the physical world!)

1The more general case of forcing we would use the Method of Undetermined Coefficients to solve.
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