Linear Operators and Cramer's Rule

1. Let $R(f)$ be the operator defined by: $R(f)=f^{\prime \prime}(t)+3 t^{2} f(t)$.

For example, $R\left(\mathrm{e}^{2 t}+5 t\right)=4 \mathrm{e}^{2 t}+3 t^{2} \mathrm{e}^{2 t}+15 t^{3}$. Find $R(f)$ for each f below:
(a) $f(t)=t^{2}$
(b) $f(t)=\sin (3 t)$
(c) $f(t)=2 t-5$
2. Let R be the operator defined in the previous problem. Show that R is a linear operator. Hint: Show that $R(c f+d g)=c R(f)+d R(g)$ for functions f, g and scalars c, d.
3. Let $F(y)=y^{\prime \prime}+y-5$. Explain why F is not linear.
4. Find the operator associated with the given differential equation, and classify it as linear or not linear:
(a) $y^{\prime}=t y^{2}+\cos (t)$
(c) $y^{\prime}=\mathrm{e}^{t} y+5$
(b) $y^{\prime \prime}=4 y^{\prime}+3 y+\sin (t)$
(d) $y^{\prime \prime}=-\cos (y)+\cos (t)$
5. Use Cramer's Rule to solve the following systems:
(a) $\begin{aligned} C_{1}+C_{2} & =2 \\ -2 C_{1}-3 C_{2} & =3\end{aligned}$
(c) $\begin{aligned} C_{1}+C_{2} & =2 \\ 3 C_{1}+C 2 & =1\end{aligned}$
(e) $\begin{aligned} & 2 x-3 y=1 \\ & 3 x-2 y=1\end{aligned}$
(b) $\begin{aligned} C_{1}+C_{2} & =y_{0} \\ r_{1} C_{1}+r_{2} C_{2} & =v_{0}\end{aligned}$
(d) $\begin{aligned} 2 C_{1}-5 C_{2} & =3 \\ 6 C 1-15 C_{2} & =10\end{aligned}$
6. Suppose L is a linear operator. Let y_{1}, y_{2} each solve the equation $L(y)=0$ (so that $L\left(y_{1}\right)=0$ and $L\left(y_{2}\right)=0$). Show that anything of the form $c_{1} y_{1}+c_{2} y_{2}$ will also solve $L(y)=0$.

This means that if we have two solutions to the homogeneous linear equation, then any combination of the form $c_{1} y_{1}+c_{2} y_{2}$ is also a solution to the homogeneous equation.

