
Sample Questions (Chapter 3, Math 244)

1. True or False?

(a) The characteristic equation for y′′ + y′ + y = 1 is r2 + r + 1 = 1

SOLUTION: False. The characteristic equation is for the homogeneous equation, r2 + r + 1 = 0

(b) The characteristic equation for y′′ + xy′ + exy = 0 is r2 + xr + ex = 0

SOLUTION: False. The characteristic equation was defined only for DEs with constant coeffi-
cients, since our ansatz depended on constant coefficients.

(c) The function y = 0 is always a solution to a second order linear homogeneous differential equation.

SOLUTION: True. For a linear operator L, it is always true that L(0) = 0.

(d) In using the Method of Undetermined Coefficients, the ansatz

yp = (Ax2 +Bx+ C)(D sin(x) + E cos(x)) is equivalent to

yp = (Ax2 +Bx+ C) sin(x) + (Dx2 + Ex+ F ) cos(x)

SOLUTION: False- We have to be able to choose the coefficients for each polynomial (for the sine
and cosine) independently of each other. In the form:

(Ax2 +Bx+ C)(D sin(x) + E cos(x))

the polynomials for the sine and cosine are constant multiples of each other, which may not
necessarily hold true. That’s why we need one polynomial for the sine, and one for the cosine (so
the second guess is the one to use).

(e) The operator T (y) = y′ + t2y + 1 is a linear operator (in y).

SOLUTION: False- The ”+1” term makes the operator not linear. For example, T (cy) = cy′ +
ct2y + 1, but c(T (y)) = cy′ + ct2y + c.

2. (a) First, solve the DE: y′′ + 4y′ + 3y = 0. (b) Use Cramer’s rule to find the constants, if the initial
conditions are y(0) = 1, y′(0) = α.

SOLUTION: The solutions to the characteristic equation are r = −1,−3, so that the general solution
is

y(t) = C1e
−t + C2e

−3t

Applying the initial conditions gives:

C1 + C2 = 1
−C1 − 3C2 = α

⇒ C1 =

∣∣∣∣ 1 1
α −3

∣∣∣∣∣∣∣∣ 1 1
−1 −3

∣∣∣∣ =
−3− α

−2
, C2 =

∣∣∣∣ 1 1
−1 α

∣∣∣∣∣∣∣∣ 1 1
−1 −3

∣∣∣∣ =
α+ 1

−2

3. Construct the operator associated with the differential equation: y′ = y2 − 4. Is the operator linear?
Show that your answer is true by using the definition of a linear operator.

SOLUTION: The operator is found by moving the terms with y to the left side, and everything else
to the right. What remains on the left is the operator. In this case, T (y) = y′ − y2.

Because we’re squaring y, we expect it NOT to be linear, but we can check:

T (y1 + y2) = (y1 + y2)
′ − (y1 + y2)

2 = y′1 − y21 + y′2 − y22 − 2y1y2

The extra term on the end makes this expression not equal to T (y1)+T (y2). Similarly, we would check
if T (cy) = cT (y):

T (cy) = cy′ − (cy)2 = cy′ − c2y2 ̸= c(y′ − y2)

Therefore, the second part of linearity does not hold either.
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4. What do we need to check in order to see if two functions, y1.y2 form a fundamental set of solutions
to a given second order linear homogeneous DE?

SOLUTION: The functions y1, y2 will form a fundamental set of solutions if (1) both satisfy the DE
separately, and (2) they satisfy W (y1, y2)(t0) ̸= 0.

5. If W (f, g) = t2et and f(t) = t, find g(t).

SOLUTION:

W (f, g) =

∣∣∣∣ t g(t)
1 g′(t)

∣∣∣∣ = tg′(t)− g(t) ⇒ tg′ − g = t2et

Solving this, divide by t, compute the integrating factor, etc:

g′ − 1

t
g = tet ⇒ (g/t)′ = et ⇒ g/t = et + C ⇒ g(t) = tet + Ct

(But notice that t is actually f(t), so we don’t need the Ct part).

6. If y1, y2 form a fundamental set of solutions to: t2y′′ − 2y′ + (3+ t)y = 0, and if W (y1, y2)(2) = 3, find
W (y1, y2)(4).

SOLUTION: (This is exercise 35 in 3.2) Compute the Wronskian using Abel’s Theorem:

W (y1, y2)(t) = Ce−
∫

p(t) dt = Ce−
∫

−2/t2 dt = Ce−2/t

Now, if W (y1, y2)(2) = 3, then we can find C:

C · e−1 = 3 ⇒ C = 3e

Now we can compute the Wronskian at t = 4:

W (y1, y2)(4) = 3e · e−2/4 = 3
√
e

7. Given that y1 = 1
t solves the differential equation: t2y′′ − 2y = 0, find a fundamental set of solutions

using Abel’s Theorem. SOLUTION: First, rewrite the differential equation in standard form:

y′′ − 2

t2
y = 0

Then p(t) = 0 and W (y1, y2) = Ce0 = C. On the other hand, the Wronskian is:

W (y1, y2) =
1

t
y′2 +

1

t2
y2

Put these together:
1

t
y′2 +

1

t2
y2 = C y′2 +

1

t
y2 = Ct

The integrating factor is t,

(ty2)
′ = Ct2 ⇒ ty2 = C1t

3 + C2 ⇒ C1t
2 +

C2

t

Notice that we have both parts of the homogeneous solution, y1 = 1
t and y2 = t2.

8. Give the general solution:

(a) y′′ − 3y′ − 10y = 0

SOLUTION: The characteristic equation is r2 − 3r − 10 = 0. The factors of 10 are 2, 5 and so
those work: (r − 5)(r + 2) = 0, and r = −2, 5.

y(t) = C1e
−2t + C2e

5t
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(b) y′′ + 4y′ + 4y = 0

SOLUTION: The characteristic equation is a perfect square:

r2 + 4r + 4 = 0 ⇒ (r + 2)2 = 0 r = −2,−2

Therefore,
y(t) = C1e

−2t + C2te
−2t = e−2t(C1 + C2t)

(c) y′′ − 4y′ + 5y = 0

SOLUTION: Complex roots: r2− 4r+5 = 0 becomes r2− 4r+4 = −1 by completing the square,
or

(r − 2)2 = −1 ⇒ r = 2± i

The solution is then:

y(t) = C1e
2t cos(t) + C2e

2t sin(t) = e2t(C1 cos(t) + C2 sin(t))

9. Suppose the roots to the characteristic equation are as given below. Write the general solution to the
DE, and write down what the second order linear homogeneous DE was.

(a) r = −2, 3

SOLUTION: The characteristic equation becomes (r + 2)(r − 3) = 0, or r2 − r − 6 = 0, and that
would come from the DE: y′′ − y′ − 6y = 0. The solution to the DE is y(t) = C1e

−2t + C2e
3t.

(b) r = 1, 1

SOLUTION: The characteristic equation becomes (r−1)2 = 0, or r2−2r+1 = 0, and that would
come from the DE: y′′ − 2y′ + y = 0. The solution to the DE is y(t) = et(C1 + C2t).

(c) r = 2± 3i

SOLUTION: We want (r − 2)2 = −9, so that when we take the square root, we get the desired
result. Simplifying, we get r2 − 4r + 4 = −9, which “simplifies” to r2 − 4r + 13 = 0. That would
come from the DE: y′′−4y′+13y = 0. The solution to the DE is y(t) = e2t(C1 cos(3t)+C2 sin(3t)).

10. Rewrite the expression in the form a+ ib: (i) 2i−1 (ii) e(3−2i)t (iii) eiπ

NOTE for the SOLUTION: Remember that for any non-negative number A, we can write A = eln(A).

� 2i−1 = eln(2
i−1) = e(i−1) ln(2) = e− ln(2)ei ln(2) = 1

2 (cos(ln(2)) + i sin(ln(2)))

� e(3−2i)t = e3te−2ti = e3t (cos(−2t) + i sin(−2t)) = e3t (cos(2t)− i sin(2t))

(Recall that cosine is an even function, sine is an odd function).

� eiπ = cos(π) + i sin(π) = −1

11. Write a+ ib in polar form: (i) −1−
√
3i (ii) 3i (iii) −4 (iv)

√
3− i

SOLUTIONS:

(i) r =
√
1 + 3 = 2, θ = −2π/3 (look at its graph, use 30-60-90 triangle):

−1−
√
3i = 2e−

2π
3 i

(ii) 3i = 3e
π
2 i

(iii) −4 = 4eπi

(iv)
√
3− i = 2e−

π
6 i

12. Write each expression as R cos(ωt− δ)
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(a) 3 cos(2t) + 4 sin(2t)

SOLUTION: For each of these, think of A cos(2t)+B sin(2t) as defining a complex number A+iB.
Then R is the magnitude and δ is the angle for A+ iB. In this particular case, we see that (A,B)
is in Quadrant I, so δ does not need an extra π added to it:

R =
√
9 + 16 = 5 δ = tan−1(4/3) ⇒ 3 cos(2t) + 4 sin(2t) = 5 cos(2t− tan−1(4/3))

(b) − cos(t) +
√
3 sin(t)

SOLUTION: Note that in this case, (−1,
√
3) is in Quadrant II, so add π to δ. Also, notice that

the angle δ is coming from a triangle with side 1, 2,
√
3 (or 30-60-90). In this case,

R =
√
1 + 3 = 2 δ = tan−1(−

√
3) = −π/3, ⇒ − cos(t) +

√
3 sin(t) = 2 cos(t− (2π/3))

(c) 4 cos(3t)− 2 sin(3t)

SOLUTION: In this case, (4,−2) is coming from Quadrant IV, so no need to add π to δ. We
don’t have a special triangle in this case.

R =
√
16 + 4 = 2

√
5 δ = tan−1(−1/2) ⇒ 4 cos(3t)−2 sin(3t) = 2

√
5 cos(t−tan−1(−1/2))

13. Practice setting up the Spring-Mass model: If you need it, g ≈ 9.8 = 49
5 .

(a) Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is γ = 0.05. If there
is no external forcing, then what would the spring constant have to be in order for the system to
critically damped? underdamped?

SOLUTION: We can find the differential equation:

0.01u′′ + 0.05u′ + ku = 0 ⇒ u′′ + 5u′ + 100ku = 0

Then the system is critically damped if the discriminant (from the quadratic formula) is zero:

b2 − 4ac = 25− 4 · 100k = 0 ⇒ k =
25

400
=

1

16

The system is underdamped if the discriminant is negative:

25− 400k < 0 ⇒ k >
1

16

(NOTE: I’ll try to make sure the numbers work out nicely on the exam).

(b) A mass of 0.5 kg stretches a spring an additional 0.05 meters to get to equilibrium. (i) Find the
spring constant. (ii) Does a stiff spring have a large spring constant or a small spring constant
(explain).

SOLUTION:

We use Hooke’s Law at equilibrium: mg − kL = 0, or

k =
mg

L
=

(1/2)(9.8)

(1/20)
= (10)(9.8) = 98

For the second part, a stiff spring will not stretch, so L will be small (and k would therefore be
large), and a spring that is not stiff will stretch a great deal (so that k will be smaller).
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(c) It takes 6 N of force to stretch a certain spring 3 meters. A mass of 1
2 kg is attached to a spring.

(a) Find the spring constant, and (b) if the damping constant is 2, write the differential equation
for the motion of the mass.

SOLUTION: For the spring constant, 6 = kL = 3k, so k = 2. If γ = 2 as well, then the DE for
the motion of the mass is

1

2
u′′ + 2u′ + 2u = 0

(d) Given the model of motion of the mass on a spring is given by

1

2
u′′ + γu′ + 8u = 0

Find γ so that the spring is underdamped, critically damped, overdamped.

SOLUTION: We’re considering the discriminant of the characteristic equation, which in this case
is given by

γ2 − 4mk = γ2 − 4(
1

2
)(8) = γ2 − 16

In each case, we may assume γ > 0 since it represents damping in a physical system.

� For γ2 − 16 > 0, we must have γ > 4. In this case, the system is overdamped.

� If γ = 4, the system is critically damped.

� 0 < γ < 4, the system is underdamped.

14. Solve. If there are initial conditions, solve for all constants, otherwise, find the general solution.

(a) u′′ + u = 3t+ 4, u(0) = 0, u′(0) = 0.

The solution is: u(t) = −4 cos(t)− 3 sin(t) + 3t+ 4.

Details: The characteristic equation is r2+1 = 0, so the roots are r = ±i, and uh(t) = C1 cos(t)+
C2 sin(t).

For the particular solution, guess up(t) = At+B. Substituting this into the DE, we get

0 + (At+B) = 3t+ 4

So in this case, the solution is very easy: up(t) = 3t+ 4. Putting the solutions together,

u(t) = C1 cos(t) + C2 sin(t) + 3t+ 4

Now put in the initial conditions u(0) = 0 and u′(0) = 0:

0 = C1 + 4
0 = C2 + 3

⇒ C1 = −4, C2 = −3

(b) u′′ + u = cos(2t), u(0) = 0, u′(0) = 0

In this case, the homogeneous part didn’t change from the previous problem, and the guess for
the particular part is

up = A cos(2t) +B sin(2t) u′
p = 2B cos(2t)− 2A sin(2t) u′′

p = −4A cos(2t)− 4B sin(2t)

Therefore, we get

(−4A cos(2t)− 4B sin(2t)) + (A cos(2t) +B sin(2t)) = cos(2t) ⇒ −3A = 1, B = 0

The solution thus far is

u(t) = C1 cos(t) + C2 sin(t)−
1

3
cos(2t)

Using the initial conditions: 0 = C1 − 1
3 and 0 = C2. Now we can write:

u(t) =
1

3
cos(t)− 1

3
cos(2t)
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(c) u′′ + u = cos(t), u(0) = 0, u′(0) = 0 (And please compare to the previous problem).

SOLUTION: The solution gets a little messy because we now have to multiply our guess by t, but
we can differentiate and substitute as usual. We’ll group terms with cos(t) and sin(t) together:

up(t) = t(A cos(t) +B sin(t)), u′
p = (At+B) cos(t) + (−Bt+A) sin(t)

In the second derivative, we get u′′
p = (−At+ 2B) cos(t)− (Bt+ 2A) sin(t).

Putting these together in the DE:

2B cos(t) + 2A sin(t) = cos(t) ⇒ B = 1/2, A = 0

Now we get

u(t) = C1 cos(t) + C2 sin(t) +
t

2
sin(t)

With zero initial conditions, u(t) = t
2 sin(t).

For the comparison: This function blows up because of resonance- The forcing frequency matches
the natural frequency. In the previous problem, these were unequal.

(This problem had more algebra than you’ll typically see on the exam).

(d) y′′ + 4y′ + 4y = e−2t

SOLUTION: Find the homogeneous part of the solution first, so the characteristic equation is
r2 + 4r + 4 = 0, or (r + 2)2 = 0, or r = −2,−2. Therefore, yh(t) = C1e

−2t + te−2t. For the
particular solution, we guess yp(t) = e−2t, but we’ll have to multiply it by t2.

Solving for the coefficient:

yp = At2e−2t, y′p = 2Ate−2t − 2At2e−2t, y′′p = 2Ae−2t − 8Ate−2t + 4At2e−2t

Substitute into the DE (factor out the Ae−2t term)

Ae−2t((2− 8t+ 4t2) + 4(2t− 2t2) + 4t2) = e−2t ⇒ 2A = 1

Therefore, the full solution is

y(t) = e−2t(C1 + C2t) +
1

2
t2e−2t

(e) y′′ − 2y′ + y = tet + 4, y(0) = 1, y′(0) = 1.

Breaking apart our solution:

� yh = et(C1 + C2t)

� For the constant forcing, yp1
= A. It’s easy to see that yp1

(t) = 4.

� For the other forcing function, we need to multiply our guess by t2. The algebra does get a
bit messy, but this is very similar to the last problem:

yp(t) = t2(At+B)et

We should find that A = 1/6, B = 0, so yp(t) =
1
6 t

3et

Putting it together, we can find C1, C2. We should find that the full solution is given by

y(t) = et(−3 + 4t) +
1

6
t3et + 4

(Sorry for the heavy algebra- Typically there won’t be that much on an exam).
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15. Find a second order linear differential equation with constant coefficients whose general solution is
given by:

y(t) = C1 + C2e
−t +

1

2
t2 − t

SOLUTION: We can see that the roots to the characteristic equation are r = 0 and r = −1, so that the
characteristic equation could be expressed as r(r + 1) = 0, or r2 + r = 0. This gives the homogeneous
part of the DE as y′′ + y′ = 0.

If yp(t) =
1
2 t

2 − t is a solution, then we can substitute it into the DE as see what we get:

y′′p + y′p = (1) + (t− 1) = t ⇒ y′′ + y′ = t

This is our full differential equation.

16. Determine the longest interval for which the IVP is certain to have a unique solution (Do not solve the
IVP):

t(t− 4)y′′ + 3ty′ + 4y = 2 y(3) = 0 y′(3) = −1

SOLUTION: Write in standard form first-

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)

The coefficient functions are all continuous on each of three intervals:

(−∞, 0), (0, 4) and (4,∞)

Since the initial time is 3, we choose the middle interval, (0, 4).

17. Let L(y) = ay′′ + by′ + cy for some value(s) of a, b, c.

If L(3e2t) = −9e2t and L(t2 + 3t) = 5t2 + 3t− 16, what is the particular solution to:

L(y) = −10t2 − 6t+ 32 + e2t

SOLUTION: This purpose of this question is to see if we can use the properties of linearity to get at
the answer.

We see that: L(3e2t) = −9e2t, or L(e2t) = −3e2t so:

L

(
−1

3
e2t

)
= e2t

And for the second part,

L(t2 + 3t) = 5t2 + 3t− 16 ⇒ L((−2)(t2 + 3t)) = −10t2 + 6t− 32

The particular solution is therefore:

yp(t) = −2(t2 + 3t)− 1

3
e2t

since we have shown that

L

(
−2(t2 + 3t)− 1

3
e2t

)
= −10t2 + 6t− 32 + e2t

18. For each DE below, use the Method of Undetermined Coefficients to give the final form of your guess
for the particular solution, yp(t). Do NOT solve for the coefficients.
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(a) y′′ + 3y′ = t3 + t2e−t + sin(3t)

SOLUTION: The idea is that we’ll split our solution into several parts- One for the homogeneous
equation, one for the polynomial, one for the middle exponential term and one for the trig function.
The final guess for the particular solution will be the sum of the three particular guesses.

� For yh, we see r = 0 and r = −3, so yh(t) = C1 + C2e
−3t.

� For t3, we first guess yp = At3 + Bt2 + Ct + D. However, the constant D is part of the
homogeneous solution (C1 · 1), so multiply by t:

yp1
(t) = t(A1t

3 +B1t
2 + C3t+D1)

� For the degree 2 poly times the exponential, we’re all clear:

yp2
(t) = (A2t

2 +B2t+ C4)e
−t

� For the sine term, we’re also clear of yh:

yp3
(t) = A3 cos(3t) +B3 sin(3t)

So again, the full guess is yp1(t) + yp2(t) + yp3(t)

(b) y′′ + y = t(1 + sin(t))

SOLUTION: Again, we break our solution up into pieces. First the homogeneous part, then we’ll
deal with ”t”, then ”tsin(t)”.

� For yh, r = ±i, so yh = C1 cos(t) + C2 sin(t).

� For the t term: yp1
(t) = At+B, and we don’t need to multiply the guess.

� For the t sin(t) term, we need a full poly of degree 1 for both the sine and cosine terms:

yp2
(t) = (A2t+B2) cos(t) + (D2t+ E2) sin(t)

And because cos(t), sin(t) are in the homogeneous part, we need to multiply by t, and this
gives us the final form for yp2(t):

yp2
(t) = t((A2t+B2) cos(t) + (D2t+ E2) sin(t))

And the full guess is yp(t) = yp1
(t) + yp2

(t).

(c) y′′ − 5y′ + 6y = e2t(3t+ 4) sin(t)

SOLUTION: Same technique as before- Break up the solution into the homogeneous part and the
particular part.

� yh : The char eqn is (r − 2)(r − 3) = 0, so r = 2, 3 and the homogeneous part of the solution
is C1e

2t + C2e
3t.

� For yp, think of the given expression as an exponential times a poly of deg 1, times the sine.
We need a separate poly of degree 1 for the sine and cosine in our guess:

yp(t) = e2t(At+B) cos(t) + e2t(Dt+ E) sin(t)

And we don’t need to multiply by t in this case.

(d) y′′ + 2y′ + 2y = 3e−t + 2e−t cos(t) + 4e−tt2 sin(t)

SOLUTION: As usual, break up the solution into three parts counting the homogeneous part -
Note that we can deal with both the sine and cosine term in one guess.

� For yh, we see that r = −1,−1, so yh is using e−t and te−t for the fundamental set.

� For the 3e−t term, we guess yp1
(t) = Ae−t, but we have to multiply that by t2, so our final

form is
yp1

(t) = At2e−t
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� For the other two terms, we’re clear of the homogeneous solution so we won’t multiply by t.
We see a polynomial of degree 2 being used for the sine term, so we’ll use a full poly of deg
2 for both the cosine and sine in our guess. Notice that automatically includes the form for
the cosine part.

yp2
(t) = e−t((A1t

2 +A2t+A3) cos(t) + (B1t
2 +B2t+B3) sin(t))

Now, just like before, yp(t) = yp1(t) + yp2(t).

19. Each equation below exhibits either beating, resonance, or neither. Label each one with B, R, or
N .

SOLUTION: Recall that the form we’re looking at is y′′ + ω2
0y = cos(ωt) (or sin(ωt)). If ω0 ≈ ω, we

get beating. If ω0 = ω, we get resonance. Otherwise, label as “neither”.

(a) y′′ + 3y = cos(3t) N

(b) y′′ + 9y = cos(3t) RESONANCE

(c) y′′ + (1.1)2y = sin(t) BEATING

(d) y′′ + 3y = cos(9t) N
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