Exercise Set for Complex Eigenvalues

1. (a) $\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$

SOLUTION: $\operatorname{Tr}(A)=2$, $\operatorname{det}(A)=-3+8=5$, so the characteristic equation is $\lambda^{2}-2 \lambda+5=0$. Solving for λ, we get $\lambda=1 \pm 2 i$.
Using $\lambda=1+2 i$, solve the system of equations (we only need the first equation):

$$
\begin{array}{r}
(a-\lambda) v_{1}+b v_{2}=0 \\
c v_{1}+(d-\lambda) v_{2}=0
\end{array} \quad \Rightarrow \quad(2-2 i) v_{1}-2 v_{2}=0 \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{c}
2 \\
2-2 i
\end{array}\right] \quad \text { or }\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]
$$

The solution to the DE is found by first computing $\mathrm{e}^{\lambda t} \mathbf{v}$:

$$
\begin{gathered}
\mathrm{e}^{(1+2 i) t}\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]=\mathrm{e}^{t}(\cos (2 t)+i \sin (2 t))\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]= \\
\mathrm{e}^{t}\left[\begin{array}{c}
\cos (2 t)+i \sin (2 t) \\
(\cos (2 t)+\sin (2 t))+i(-\cos (2 t)+\sin (2 t))
\end{array}\right]
\end{gathered}
$$

From this, the solution is

$$
\begin{gathered}
\mathbf{x}(t)=C_{1} \operatorname{real}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{imag}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right) \\
\mathbf{x}(t)=\mathrm{e}^{t}\left[C_{1}\left[\begin{array}{c}
\cos (2 t) \\
\cos (2 t)+\sin (2 t)
\end{array}\right]+C_{2}\left[\begin{array}{c}
\sin (2 t) \\
-\cos (2 t)+\sin (2 t)
\end{array}\right]\right]
\end{gathered}
$$

The origin in this case is a "spiral source". We should find that the rotation is CCW.
(b) $\left[\begin{array}{ll}2 & -5 \\ 1 & -2\end{array}\right]$

SOLUTION: $\operatorname{Tr}(A)=0, \operatorname{det}(A)=1$, so the characteristic equation is $\lambda^{2}+1=0$, so $\lambda= \pm i$.
Using $\lambda=i$, solve the system of equations (we only need the first equation):

$$
\begin{aligned}
& (a-\lambda) v_{1}+b v_{2}=0 \\
& c v_{1}+(d-\lambda) v_{2}=0
\end{aligned} \quad \Rightarrow \quad(2-i) v_{1}-5 v_{2}=0 \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{c}
5 \\
2-i
\end{array}\right]
$$

The solution to the DE is found by first computing $\mathrm{e}^{\lambda t} \mathbf{v}$:

$$
\begin{aligned}
& \mathrm{e}^{i t}\left[\begin{array}{c}
5 \\
2-i
\end{array}\right]=(\cos (t)+i \sin (t))\left[\begin{array}{c}
5 \\
2-i
\end{array}\right]= \\
& {\left[\begin{array}{c}
5 \cos (t)+i 5 \sin (t) \\
(2 \cos (t)+\sin (t))+i(-\cos (t)+2 \sin (t))
\end{array}\right]}
\end{aligned}
$$

From this, the solution is

$$
\begin{gathered}
\mathbf{x}(t)=C_{1} \operatorname{real}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{imag}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right) \\
\mathbf{x}(t)=C_{1}\left[\begin{array}{c}
5 \cos (t) \\
2 \cos (t)+\sin (t)
\end{array}\right]+C_{2}\left[\begin{array}{c}
5 \sin (2 t) \\
-\cos (t)+2 \sin (t)
\end{array}\right]
\end{gathered}
$$

Because there is no real exponential function, the origin will be a "center" (solutions are periodic), and the rotation is CCW.
(c) (Oops! Same as (a))
2. (a) Given $\lambda=-1+2 i$, and $\mathbf{v}=\left[\begin{array}{c}1-i \\ 2\end{array}\right]$, the solution is

$$
\begin{gathered}
\mathbf{x}(t)=C_{1} \operatorname{real}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{imag}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right) \\
\mathrm{e}^{(-1+2 i) t}\left[\begin{array}{c}
1-i \\
2
\end{array}\right]=\mathrm{e}^{-t}(\cos (2 t)+i \sin (2 t))\left[\begin{array}{c}
1-i \\
2
\end{array}\right]= \\
\mathrm{e}^{-t}\left[\begin{array}{c}
(\cos (2 t)+\sin (2 t))+i(-\cos (2 t)+\sin (2 t) \\
2 \cos (2 t)+i 2 \sin (2 t)
\end{array}\right]
\end{gathered}
$$

Therefore,

$$
\mathbf{x}(t)=\mathrm{e}^{-t}\left[C_{1}\left[\begin{array}{c}
\cos (2 t)+\sin (2 t) \\
2 \cos (2 t)
\end{array}\right]+C_{2}\left[\begin{array}{c}
-\cos (2 t)+\sin (2 t) \\
2 \sin (2 t)
\end{array}\right]\right]
$$

The origin is a spiral sink.
(b) $\lambda=-2,3$ with $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$

The solution is:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{-2 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} \mathrm{e}^{3 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

The origin is a saddle.
(c) $\lambda=-1,-3$ with $v_{1}=\left[\begin{array}{r}-1 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{r}2 \\ -1\end{array}\right]$

The solution is:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{-t}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]+C_{2} \mathrm{e}^{-3 t}\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

The origin is a sink.
(d) Given $\lambda=1+3 i$, and $\mathbf{v}=\left[\begin{array}{c}1 \\ 1-i\end{array}\right]$, the solution is

$$
\begin{gathered}
\mathbf{x}(t)=C_{1} \operatorname{real}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{imag}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right) \\
\mathrm{e}^{(1+3 i) t}\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]=\mathrm{e}^{t}(\cos (3 t)+i \sin (3 t))\left[\begin{array}{c}
1 \\
1-i
\end{array}\right]= \\
\mathrm{e}^{t}\left[\begin{array}{c}
\cos (3 t)+i \sin (3 t) \\
(\cos (3 t)+\sin (3 t))+i(-\cos (3 t)+\sin (3 t)
\end{array}\right]
\end{gathered}
$$

Therefore,

$$
\mathbf{x}(t)=\mathrm{e}^{t}\left[C_{1}\left[\begin{array}{c}
\cos (3 t) \\
\cos (3 t)+\sin (3 t)
\end{array}\right]+C_{2}\left[\begin{array}{c}
\sin (3 t) \\
-\cos (3 t)+\sin (3 t)
\end{array}\right]\right]
$$

The origin is a spiral source.
(e) Given $\lambda=2 i$, and $\mathbf{v}=\left[\begin{array}{c}1+i \\ 1\end{array}\right]$, the solution is

$$
\begin{gathered}
\mathbf{x}(t)=C_{1} \operatorname{real}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)+C_{2} \operatorname{imag}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right) \\
\mathrm{e}^{2 i t}\left[\begin{array}{c}
1+i \\
1
\end{array}\right]=(\cos (2 t)+i \sin (2 t))\left[\begin{array}{c}
1+i \\
1
\end{array}\right]= \\
{\left[\begin{array}{c}
(\cos (2 t)-\sin (2 t))+i(\cos (2 t)+\sin (2 t) \\
\cos (2 t)+i \sin (2 t)
\end{array}\right]}
\end{gathered}
$$

Therefore,

$$
\mathbf{x}(t)=C_{1}\left[\begin{array}{c}
\cos (2 t)-\sin (2 t) \\
\cos (2 t)
\end{array}\right]+C_{1}\left[\begin{array}{c}
\cos (2 t)+\sin (2 t) \\
\sin (2 t)
\end{array}\right]
$$

The origin is a center.

