HW to Replace 7.1: Systems of Differential Equations

Try them all, but turn in solutions to 1(a), 3(a) and all of 6 .

1. For each second order differential equation below, write the corresponding system of first order equations. Lastly, write the system in matrix-vector form.
(a) $y^{\prime \prime}+2 y^{\prime}-3 y=0$
(c) $y^{\prime \prime}-9 y=0$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0$
(d) $y^{\prime \prime}-2 y^{\prime}+2 y=0$
2. For extra practice, go back and give the general solution to each second order DE (using methods from Chapter 3 of our textbook).
3. For each system of first order, convert to a corresponding second order differential equation.
(a) $\begin{aligned} & x^{\prime}=3 x-2 y \\ & y^{\prime}=2 x-2 y\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned}$
(c) $\begin{aligned} & x^{\prime}=x+y \\ & y^{\prime}=4 x-2 y\end{aligned}$
4. For extra practice, solve each of the second order DEs from the previous exercise using techniques from Chapter 3 of our text.
5. Consider the system below:

$$
\begin{aligned}
& x^{\prime}=-3 x+y \\
& y^{\prime}=-2 y
\end{aligned}
$$

Solve this system by recognizing that we can solve for y directly, then substitute this into the DE for x and solve it as a first order linear DE.
6. Each system below is nonlinear. Solve each by first writing the system as $d y / d x$.
(a) $\begin{aligned} & x^{\prime}=y\left(1+x^{3}\right) \\ & y^{\prime}=x^{2}\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3}\end{aligned}$
(c) $\begin{aligned} & x^{\prime}=2 x^{2} y+2 x \\ & y^{\prime}=-\left(2 x y^{2}+2 y\right)\end{aligned}$
7. Convert the third order (nonlinear) differential equation into a system of first order equations.

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime} y=t^{2}
$$

SOLUTIONS

1. For each second order differential equation below, write the corresponding system of first order equations.
(a) $y^{\prime \prime}+2 y^{\prime}-3 y=0$

SOLUTION: Let $u=y, v=y^{\prime}$. Then notice that $v^{\prime}=y^{\prime \prime}=3 y-2 y^{\prime}=3 u-2 v$.
The full system is then:

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =3 u-2 v
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

NOTE: Always write your variables in the same order. Since we started with u, v, then u^{\prime} came first, then v^{\prime}, etc.
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0$

SOLUTION: Let $u=y, v=y^{\prime}$. Then $v^{\prime}=y^{\prime \prime}=-4 y-4 y^{\prime}=-4 u-4 v$, and

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =-4 u-4 v
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-4 & -4
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

(c) $y^{\prime \prime}+9 y=0$

SOLUTION: Let $u=y, v=y^{\prime}$. Then $v^{\prime}=y^{\prime \prime}=-9 y=-9 u$, and

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =-9 u
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{rl}
0 & 1 \\
-9 & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

(d) $y^{\prime \prime}-2 y^{\prime}+2 y=0$

SOLUTION: Let $u=y, v=y^{\prime}$. Then $v^{\prime}=y^{\prime \prime}=2 y^{\prime}-2 y$, and

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =-2 u+2 v
\end{aligned} \quad \Rightarrow \quad\left[\begin{array}{c}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]
$$

2. For extra practice, go back and give the general solution to each second order DE (using methods from Chapter 3 of our textbook).
SOLUTIONS:
(a) $y^{\prime \prime}+2 y^{\prime}-3 y=0$

The characteristic equation is $r^{2}+2 r-3=0$, or $(r+3)(r-1)=0$, so $r=1,-3$.
Therefore, the general solution is

$$
y(t)=C_{1} \mathrm{e}^{t}+C_{2} \mathrm{e}^{-3 t}
$$

(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0$

The characteristic equation is $r^{2}+4 r+4=0$, or $(r+2)^{2}=0$, so $r=-2,-2$. Therefore, the general solution is

$$
y(t)=\mathrm{e}^{-2 t}\left(C_{1}+C_{2} t\right)
$$

(c) $y^{\prime \prime}+9 y=0$

The characteristic equation is $r^{2}+9=0$, or $r= \pm 3 i$,

$$
y(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t)
$$

(d) $y-2 y^{\prime}+2 y=0$

The characteristic equation is $r^{2}-2 r+2=0$, or $r=1 \pm i$, so $r=1,-3$. Therefore, the general solution is

$$
y(t)=\mathrm{e}^{t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)
$$

3. For each system of first order, convert to a corresponding second order differential equation.
(a) $\begin{aligned} & x^{\prime}=3 x-2 y \\ & y^{\prime}=2 x-2 y\end{aligned}$

SOLUTION: Using the first equation to solve for $y, y=-(1 / 2)\left(x^{\prime}-3 x\right)$. Putting this into the second equation:

$$
\left(-\frac{x^{\prime}-3 x}{2}\right)^{\prime}=2 x-2\left(-\frac{x^{\prime}-3 x}{2}\right)
$$

Clean up by multiplying both sides by -2 :

$$
x^{\prime \prime}-3 x^{\prime}=-4 x-2\left(x^{\prime}-3 x\right) \quad \Rightarrow \quad x^{\prime \prime}-x^{\prime}-2 x=0
$$

(b) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned}$

SOLUTION: Using the first equation to solve for $y, y=x^{\prime}+2 x$. Putting this into the second equation:

$$
\left(x^{\prime}+2 x\right)^{\prime}=x-2\left(x^{\prime}+2 x\right) \quad \Rightarrow \quad x^{\prime \prime}+4 x^{\prime}+3 x=0
$$

(c) $\begin{aligned} & x^{\prime}=x+y \\ & y^{\prime}=4 x-2 y\end{aligned}$

SOLUTION: Similar to the others, $y=x^{\prime}-x$ from equation 1 , so equation 2 becomes:

$$
x^{\prime \prime}-x^{\prime}=4 x-2\left(x^{\prime}-x\right) \quad \Rightarrow \quad x^{\prime \prime}+x^{\prime}-6 x=0
$$

4. For extra practice, solve each of the second order DEs from the previous exercise using techniques from Chapter 3 of our text.
(a) $x(t)=C_{1} \mathrm{e}^{2 t}+C_{2} \mathrm{e}^{-t}$
(b) $x(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-3 t}$
(c) $x(t)=C_{1} \mathrm{e}^{2 t}+C_{2} \mathrm{e}^{-3 t}$
5. Consider the system below:

$$
\begin{aligned}
x^{\prime} & =-3 x+y \\
y^{\prime} & =-2 y
\end{aligned}
$$

Solve this system by recognizing that we can solve for y directly, then substitute this into the DE for x and solve it as a first order linear DE.
SOLUTION: Looking at $y^{\prime}=-2 y, y(t)=C_{1} \mathrm{e}^{-2 t}$. Putting that into the equation for x^{\prime}, we get:

$$
x^{\prime}+3 x=C_{1} \mathrm{e}^{-2 t}
$$

The integrating factor is $\mathrm{e}^{3 t}$, so that

$$
\left(x \mathrm{e}^{3 t}\right)^{\prime}=C_{1} \mathrm{e}^{t} \quad \Rightarrow \quad x \mathrm{e}^{-3 t}=C_{1} \mathrm{e}^{t}+C_{2} \quad \Rightarrow \quad x(t)=C_{1} \mathrm{e}^{-2 t}+C_{2} \mathrm{e}^{-3 t}
$$

As a parametric system, we have:

$$
\left[\begin{array}{c}
C_{1} \mathrm{e}^{-2 t}+C_{2} \mathrm{e}^{-3 t} \\
C_{1} \mathrm{e}^{-2 t}
\end{array}\right]
$$

We would note that the C_{1} for y is the SAME as the C_{1} for the x.
6. Each system below is nonlinear. Solve each by first writing the system as $d y / d x$.
(a) $\begin{aligned} & x^{\prime}=y\left(1+x^{3}\right) \\ & y^{\prime}=x^{2}\end{aligned}$

SOLUTION: This becomes separable.

$$
\frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{3}\right)} \quad \Rightarrow \quad \int y d y=\int \frac{x^{2} d x}{1+x^{3}} \quad \Rightarrow \quad \frac{1}{2} y^{2}=\frac{1}{3} \ln \left(1+x^{3}\right)+C
$$

At this point, we'll leave it since we won't know if we need the positive or negative root.
(b) $\begin{aligned} & x^{\prime}=4+y^{3} \\ & y^{\prime}=4 x-x^{3}\end{aligned}$

SOLUTION: This becomes separable:
$\frac{d y}{d x}=\frac{4 x-x^{3}}{4+y^{3}} \quad \Rightarrow \quad \int 4+y^{3} d y=\int 4 x-x^{3} d x \quad \Rightarrow \quad 4 y+\frac{1}{4} y^{4}=2 x^{2}-\frac{1}{4} x^{4}+C$
We'll leave this in implicit form.
(c) $\begin{aligned} x^{\prime} & =2 x^{2} y+2 x \\ y^{\prime} & =-\left(2 x y^{2}+2 y\right)\end{aligned}$

SOLUTION: This becomes exact (don't cancel anything!)

$$
\frac{d y}{d x}=-\frac{2 x y^{2}+2 y}{2 x^{2} y+2 x} \quad \Rightarrow \quad\left(2 x y^{2}+2 y\right)+\left(2 x^{2} y+2 x\right) \frac{d y}{d x}=0
$$

This is exact, with $M_{y}=N_{x}=4 x y+2$. The solution is

$$
x^{2} y^{2}+2 x y=C
$$

7. Convert the third order (nonlinear) differential equation into a system of first order equations.

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime} y=t^{2}
$$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$, and $x_{3}=y^{\prime \prime}$. Then:

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =x_{3} \\
x_{3}^{\prime} & =x_{1} x_{2}+x_{3}+t^{2}
\end{aligned}
$$

