
Solutions to the Homework
Replaces Section 3.8

1. Solve the IVP u′′ + ω2
0u = F0 cos(ωt), u(0) = 0 and u′(0) = 0, if ω 6= ω0.

SOLUTION: If ω 6= ω0, it’s pretty straightforward:

uh(t) = C1 cos(ω0t) + C2 sin(ω0t), up(t) = A cos(ωt) +B sin(ωt)

You should be able to find that the full solution (with zero initial conditions) is

u(t) =
F0

ω2
0 − ω2

(cos(ω t)− cos(ω0 t))

2. Show that the period of motion of an undamped vibration of a mass hanging from a

vertical spring is 2π
√
L/g

SOLUTION: With no damping, mu′′ + ku = 0 has solution

u(t) = A cos

√ k

m
t

+B sin

√ k

m
t


so the period is given below. We also note that mg − kL = 0, and this equation yields
the desired substitution:

P =
2π√

k
m

= 2π

√
m

k
and mg = kL ⇒ k

m
=
g

L

3. Convert the following to R cos(ωt− δ)

(a) cos(9t)− sin(9t)

In this case, R =
√

2 and δ = tan−1(−1) = −π/4
Note that in this case, we don’t need to add π because (1,−1) is in Quadrant IV.

(b) 2 cos(3t) + sin(3t)

SOLUTION: R =
√

5 and ω = 3. The angle δ is computed as the argument of the
point (2, 1), which you can leave as δ = tan−1(1/2):

2 cos(3t) + sin(3t) =
√

5 cos(3t− tan−1(1/2))

(c) −2π cos(πt)− π sin(πt)

SOLUTION: Same idea, but note that (−2π,−π) is a point in Quadrant III, so we
add (or subtract) π:

R = π
√

5 and δ = tan−1(1/2) + π and ω = π

(d) 5 sin(t/2)− cos(t/2)

SOLUTION: Did you notice I reversed the sine and cosine on you (that was a
mistake, but maybe it was a helpful one). The value of R and ω would be the same
either way, but δ changes:
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R =
√

26 ω =
1

2
For δ, notice that our “point” is (−1, 5) which is in Quadrant II, so add π:

√
26 cos

(
t

2
− tan−1(−5)− π

)
4. u′′ + 4u = cos(2.8 t)

TOLUTION: The (circular) frequency of the beats is |ω0−ω|, or in this case, 0.8 or 4/5.
The particular part of the solution is

F0

ω2
0 − ω2

cos(ωt) =
1

3.84
cos(2.8 t) ≈ 0.26 cos(2.8 t)

5. u′′ + 9u = cos(3.1 t)

For this, the (circular) beat frequency is |ω0 − ω| = 1/10. The particular part of the
solution is

1

ω2
0 − ω2

cos(ωt) = −1.64 cos(3.1t)

6. u′′ + u = cos(1.3 t)

For this, the (circular) beat frequency is 3/10. The particular part of the solution is

1

ω2
0 − ω2

cos(ωt) = −1.45 cos(1.3t)

7. Solve u′′ + 9u = cos(3t) with zero ICs.

The solution is:

u(t) =
1

6
t sin(3t)

8. Find the particular solution of the given differential equation:

y′′ + 3y′ + 2y = cos(t)

SOLUTION: Using the Method of Undetermined Coefficients, we have

yp = A cos(t) +B sin(t)

And substitute into the DE to solve for A,B. It takes a little bit of bookkeeping, but
we should get:

1

10
cos(t) +

3

10
sin(t)

9. Consider u′′ + pu′ + qu = cos(ωt). In the notes at the bottom of p. 4, we got that

ω =

√
2q − p2

2

Thinking of p as damping, if the damping is very very small, then approximately what
value of ω will result in a very large amplitude response?

SOLUTION: If the damping is very small, then the maximizer ω becomes very close to√
q, which is what we would expect from no damping (and then resonance).
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10. Consider u′′ + u′ + 2u = cos(ωt). Find the value of ω that will maximize the amplitude
of the response.

NOTE: I don’t want you to memorize the value of ω. Rather, find the amplitude R,
then differentiate to find where the derivative is zero. Remember our shortcut (dealing
with f(ω)).

SOLUTION: Differentiate the given R with respect to ω (remember the shortcut):

R =
1√

(2− ω2)2 + ω2

We looked at a shortcut for differentiating this and setting it to zero- That’s the same
as just differentiating (2− ω2)2 + ω2 and setting that to zero.

Doing that, we get ω =
√

62 ≈ 1.22.

11. Suppose we can tune the value of q rather than the value of ω in the differential equation
(where ω = 3):

u′′ + u′ + qu = cos(3t)

Find the value of q that will maximize the amplitude of the forced response.

SOLUTION: Using the formula for R that would be given (as in the previous problem),

R =
1√

(q − 9)2 + 9

To find the q that maximizes R, differentiate and set to zero. As before, we can use a
shortcut:

d

dq

[
(q − 9)2 + 9

]
= 0 ⇒ q = 9
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