Homework for 3.7

1. For practice with trig, 3.7.1-3.7.4, also given below. In each case, write the sum as $R \cos (\omega t-\delta)$
3.7.1 $3 \cos (2 t)+4 \sin (2 t)$
3.7.2 $-\cos (t)+\sqrt{3} \sin (t)$
3.7.3 $4 \cos (3 t)-2 \sin (3 t)$
3.7.4 $-2 \cos (\pi t)-3 \sin (\pi t)$
2. Practice with the Model (and using pounds):
(a) A spring with a $3-\mathrm{kg}$ mass is held stretched 0.6 meters beyond its natural length by a force of 20 N . If the spring begins at its equilibrium position but a push gives it an initial velocity of $1.2 \mathrm{~m} / \mathrm{s}$, find the position of the mass after t seconds (assume no damping).
(b) A spring with a 4 -kg mass has a natural length of 1 meter, and is maintained stretched to a length of 1.3 m by a force of 24.3 N . If the spring is compressed to a length of 0.8 m and then released with zero velocity, find the position of the mass after t seconds (assume no damping).
(c) A spring with a mass of 2 kg has damping constant 14 and a force of 6 N is required to keep the spring stretched 0.5 m beyond its natural length. The spring is then stretched to 1 m beyond its natural length and released. Find the position of the mass at any time t.
(d) Using the approximation $g \approx 49 / 5$, suppose the mass is $20 / 49$, and the mass displaces the spring an additional $1 / 2$ meter. The mass is in a medium that exerts a viscous resistance of 6 N when the velocity is $3 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down an additional $1 / 2 \mathrm{~m}$ and released, formulate an IVP that models the motion of the mass.
(e) Using $g \approx 49 / 5$, if the weight of the mass, $m g=2$, and attached to the spring it stretches the spring $1 / 2 m$, determine the spring constant and mass. If the spring is compressed (from equilibrium) by $1 / 10 \mathrm{~m}$, and then released, and if there is no damping, determine the IVP that governs the motion of the mass.
(f) For the spring model with a mass of 4 kg , and a spring constant of 123 , find the damping constant that would produce critical damping.
(g) Suppose we consider a mass-spring system with no damping (the damping constant is then 0), so that the differential equation expressing the motion of the mass can be modeled as

$$
m u^{\prime \prime}+k u=0
$$

Find value(s) of β so that $A \cos (\beta t)$ and $B \sin (\beta t)$ are each solutions to the homogeneous equation (for arbitrary values of A, B).

