Homework for 3.7

1. For practice with trig, 3.7.1-3.7.4, also given below. In each case, write the sum as $R \cos (\omega t-\delta)$
3.7.1 $3 \cos (2 t)+4 \sin (2 t)$

SOLUTION: For each of these, think of $A \cos (2 t)+B \sin (2 t)$ as defining a complex number $A+i B$. Then R is the magnitude and δ is the angle for $A+i B$. In this particular case, we see that (A, B) is in Quadrant I, so δ does not need an extra π added to it:

$$
\begin{gathered}
R=\sqrt{9+16}=5 \quad \delta=\tan ^{-1}(4 / 3) \Rightarrow \\
3 \cos (2 t)+4 \sin (2 t)=5 \cos \left(2 t-\tan ^{-1}(4 / 3)\right)
\end{gathered}
$$

3.7.2 $-\cos (t)+\sqrt{3} \sin (t)$

SOLUTION: Note that in this case, $(-1, \sqrt{3})$ is in Quadrant II, so add π to δ. Also, notice that the angle δ is coming from a triangle with side $1,2, \sqrt{3}$ (or $30-60-90)$. In this case,

$$
\begin{aligned}
R=\sqrt{1+3}=\sqrt{2} \quad \delta & =\tan ^{-1}(-\sqrt{3})=-\pi / 3 \\
-\cos (t)+\sqrt{3} \sin (t) & =2 \cos (t-(2 \pi / 3))
\end{aligned}
$$

3.7.3 $4 \cos (3 t)-2 \sin (3 t)$

SOLUTION: In this case, $(4,-2)$ is coming from Quadrant IV, so no need to add π to δ. We don't have a special triangle in this case.

$$
\begin{gathered}
R=\sqrt{16+4}=2 \sqrt{5} \quad \delta=\tan ^{-1}(-1 / 2) \\
4 \cos (3 t)-2 \sin (3 t)=2 \sqrt{5} \cos \left(t-\tan ^{-1}(-1 / 2)\right)
\end{gathered}
$$

3.7.4 $-2 \cos (\pi t)-3 \sin (\pi t)$

SOLUTION: In this case $(-2,-3)$ is in Quadrant III, so we'll need to add π to δ.

$$
R=\sqrt{4+9}=\sqrt{13} \quad \delta=\tan ^{-1}\left(\frac{3}{2}\right)+\pi
$$

2. Practice with the Model (metric system):
(a) A spring with a $3-\mathrm{kg}$ mass is held stretched 0.6 meters beyond its natural length by a force of 20 N . If the spring begins at its equilibrium position but a push gives it an initial velocity of $1.2 \mathrm{~m} / \mathrm{s}$, find the position of the mass after t seconds (assume no damping).

SOLUTION: $m=3, \gamma=0$, so we just need the spring constant k. By Hooke's Law, the force is proportional to the length stretched:

$$
k(0.6)=20 \quad \Rightarrow \quad k=\frac{100}{3}
$$

Now we have the IVP:

$$
3 u^{\prime \prime}+\frac{100}{3} u=0 \quad u(0)=0, \quad u^{\prime}(0)=\frac{6}{5}
$$

To solve this,

$$
3 r^{2}+\frac{100}{3}=0 \quad r=\sqrt{\frac{100}{9}} i=\frac{10}{3} i
$$

The general solution is

$$
C_{1} \cos \left(\frac{10}{3} t\right)+C_{2} \sin \left(\frac{10}{3} t\right)
$$

Putting in the initial conditions,
(b) A spring with a $4-\mathrm{kg}$ mass has a natural length of 1 meter, and is maintained stretched to a length of 1.3 m by a force of 24.3 N . If the spring is compressed to a length of 0.8 m and then released with zero velocity, find the position of the mass after t seconds (assume no damping).
SOLUTION: $m=4, \gamma=0$, and the wording of the question implies that the spring is stretched 0.3 m beyond natural length, giving (convert to fractions)

$$
\frac{3 k}{10}=\frac{243}{10} \quad \Rightarrow \quad k=81
$$

To set up the IVP, compressing the spring to a length of 0.8 m means that the initial position will be -0.2 , or $-1 / 5$. Therefore, we have (recall that "up" is negative)

$$
4 u^{\prime \prime}+81 u=0 \quad u(0)=-\frac{1}{5} \quad u^{\prime}(0)=0
$$

Now solve $u^{\prime \prime}+\frac{81}{4} u=0$:

$$
\left.u(t)=C_{1} \cos \left(\frac{9}{2} t\right)+C_{2} \sin \left(\frac{9}{2} t\right)\right)
$$

Solving for the constants, you should get $C_{1}=-1 / 5, C_{2}=0$.
(c) A spring with a mass of 2 kg has damping constant 14 and a force of 6 N is required to keep the spring stretched 0.5 m beyond its natural length. The spring is then stretched to 1 m beyond its natural length and released. Find the position of the mass at any time t.

SOLUTION: $m=2, \gamma=14$ and for the spring constant, we have:

$$
\frac{k}{2}=6 \quad \Rightarrow \quad k=12
$$

The IVP is: $2 u^{\prime \prime}+14 u^{\prime}+12 u=0$, with $u(0)=1$ and $u^{\prime}(0)=0$

$$
u(t)=-\frac{1}{5} \mathrm{e}^{-6 t}+\frac{6}{5} \mathrm{e}^{-t}
$$

(d) Using the approximation $g \approx 49 / 5$, suppose the mass is $20 / 49$, and the mass displaces the spring an additional $1 / 2$ meter. The mass is in a medium that exerts a viscous resistance of 6 N when the velocity is $3 \mathrm{~m} / \mathrm{s}$. If the mass is pulled down an additional $1 / 2 \mathrm{~m}$ and released, formulate an IVP that models the motion of the mass.
SOLUTION: From what is given, we use the fact that at the equilibrium $(u(t)=$ $0), m g-k L=0$. In that case,

$$
m g=k L \quad \Rightarrow \quad \frac{20}{49} \frac{49}{5}=k \cdot \frac{1}{2} \quad \Rightarrow \quad k=8
$$

For the damping constant, recall that the force due to damping is assumed to be proportional to velocity, so that

$$
F=\gamma u^{\prime}(t) \quad \Rightarrow \quad 6=\gamma 3 \quad \Rightarrow \quad \gamma=2
$$

Therefore, the IVP is given by:

$$
\frac{20}{49} u^{\prime \prime}+2 u^{\prime}+8 u=0 \quad u(0)=\frac{1}{2} \quad u^{\prime}(0)=0
$$

(e) Using $g \approx 49 / 5$, if the weight of the mass, $m g=2$, and attached to the spring it stretches the spring $1 / 2 \mathrm{~m}$, determine the spring constant and mass. If the spring is compressed (from equilibrium) by $1 / 10 \mathrm{~m}$, and then released, and if there is no damping, determine the IVP that governs the motion of the mass.
SOLUTION: We aren't given a force for the spring, so we use equilibrium (so that $m g-k L=0$).

$$
2-k \frac{1}{2}=0 \quad \Rightarrow \quad k=4
$$

Since $m g=2$, we'll need to solve for the mass:

$$
m \frac{49}{5}=2 \quad \Rightarrow \quad m=\frac{10}{49}
$$

Then the spring equation with initial conditions is given by:

$$
\frac{10}{49} u^{\prime \prime}+4 u=0 \quad u(0)=-\frac{1}{10} \quad u^{\prime}(0)=0
$$

(f) For the spring model with a mass of 4 kg and a spring constant of 123 , find the damping constant that would produce critical damping.
SOLUTION:

$$
4 u^{\prime \prime}+\gamma u^{\prime}+123 u=0
$$

For critical damping, $\gamma^{2}-4(4)(123)=0$, so that $\gamma=4 \sqrt{123}$ (only take the positive root!)
(g) Suppose we consider a mass-spring system with no damping (the damping constant is then 0), so that the differential equation expressing the motion of the mass can be modeled as

$$
m u^{\prime \prime}+k u=0
$$

Find value(s) of β so that $A \cos (\beta t)$ and $B \sin (\beta t)$ are each solutions to the homogeneous equation (for arbitrary values of A, B).
SOLUTION: $\beta=\sqrt{\frac{k}{m}}$

