1. Use e to help compute the Laplace transform of cos(at).
SOLUTION:

Since €' = cos(at) + isin(at), then
L(e") = L(cos(at)) + iL(sin(at))

so we compute the Laplace transform of e, then take the real part
for our answer:
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And the real part is s2/(s* + a?).

2. Same idea, but we’ll compute L£(e*(cos(bt) + i sin(bt)).
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We take the real part.

3. Exponential order practice:

(a) sin(t): We can use e, for t > 0 (see graph)

(b) tan(t) has a vertical asymptote at ¢ = /2 (and multiples of 7
thereafter), so it is NOT of exponential order.

3 = eln(®) = e3In(t) < 3t g0 this is of exponential order.

e’ is not of exponential order, since the exponent is of order 2.
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