Complex Numbers

SOLUTIONS to the exercises:

1 Exercises

1. Suppose the roots to a cubic polynomial are $a=3, b=1-2 i$ and $c=1+2 i$. Compute $(x-a)(x-b)(x-c)$.
SOLUTION: You could multiply it all out at once. If you take $(x-b)(x-c)$ first, you get:

$$
(x-a)(x-b)(x-c)=(x-3)\left(x^{2}-2 x+5\right)=x^{3}-5 x^{2}+11 x-15
$$

2. Find the roots to $x^{2}-2 x+10$. Write them in polar form.

SOLUTION:

$$
x=\frac{2 \pm \sqrt{2^{2}-4(10)}}{2}=\frac{2 \pm \sqrt{-36}}{2}=\frac{2 \pm 6 i}{2}=1 \pm 3 i
$$

3. Show that:

$$
\operatorname{Re}(z)=\frac{z+\bar{z}}{2} \quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}
$$

SOLUTION: If $z=a+b i$, then $\bar{z}=a-b i$, so:

$$
z+\bar{z}=a+i b+(a-i b)=2 a=2 \operatorname{Re}(z)
$$

And similarly,

$$
z-\bar{z}=a+i b-(a-i b)=2 i b \quad \Rightarrow \quad \operatorname{Im}(z)=b=\frac{z-\bar{z}}{2 i}
$$

4. For the following, let $z_{1}=-3+2 i, z_{2}=-4 i$
(a) Compute $z_{1} \bar{z}_{2}, z_{2} / z_{1}$

SOLUTION:

$$
\begin{gathered}
z_{1} \overline{z_{2}}=(-3+2 i)(4 i)=\left(8 i^{2}\right)-12 i=-8-12 i \\
\frac{z_{2}}{z_{1}}=\frac{-4 i}{-3+2 i} \cdot \frac{-3-2 i}{-3-2 i}=\frac{-8+12 i}{3^{2}+4^{2}}=-\frac{8}{13}+\frac{12}{13} i
\end{gathered}
$$

(b) Write z_{1} and z_{2} in polar form.

SOLUTION: For z_{1}, the point $(-3,2)$ is in Quadrant II. To find the argument (angle) for z_{1}, we have to add π to the arctangent:

$$
\theta=\tan ^{-1}\left(\frac{2}{-3}\right)+\pi \approx 2.554 \mathrm{rad}
$$

The length is: $r=\sqrt{3^{2}+2^{2}}=\sqrt{13}$.

We can verify this, by checking that:

$$
\sqrt{13} \cos (\theta) \approx-3 \quad \sqrt{13} \sin (\theta) \approx 2
$$

Writing the answer in polar form, $r \mathrm{e}^{i \theta}$,

$$
-3+2 i=\sqrt{13} \mathrm{e}^{2.554 i}
$$

For z_{2}, it is much simpler: $r=4$ and $\theta=-\pi / 2$. Therefore,

$$
-4 i=r \mathrm{e}^{i \theta}=4 \mathrm{e}^{-i \pi / 2}
$$

5. In each problem, rewrite each of the following in the form $a+b i$:
(a) $\mathrm{e}^{1+2 i}$

$$
\mathrm{e}(\cos (2)+i \sin (2))
$$

(b) $e^{2-3 i}$

$$
\mathrm{e}^{2}(\cos (-3)+i \sin (-3))=\mathrm{e}^{2}(\cos (3)-i \sin (3))
$$

(c) $e^{i \pi}$

$$
\cos (\pi)+i \sin (\pi)=-1
$$

(d) 2^{1-i} First, notice that $2^{1-i}=2 \cdot 2^{-i}$, so we'll compute 2^{-i} below:

$$
2^{-i}=\mathrm{e}^{\ln \left(2^{-i}\right)}=\mathrm{e}^{-i \ln (2)}=\cos (-\ln (2))+i \sin (-\ln (2))=\cos (\ln (2))-i \sin (\ln (2))
$$

Therefore, 2^{1-i} can be expressed as:

$$
2(\cos (\ln (2))-i \sin (\ln (2)))
$$

(e) $\mathrm{e}^{2-\frac{\pi}{2} i}$

$$
\mathrm{e}^{2}(\cos (-\pi / 2)+i \sin (-\pi / 2))=-i \mathrm{e}^{2}
$$

(f) π^{i}

$$
\pi^{i}=\mathrm{e}^{\ln \left(\pi^{i}\right)}=\mathrm{e}^{i \ln (\pi)}=\cos (\ln (\pi))+i \sin (\ln (\pi))
$$

