
Selected Solutions, Section 5.2

For problems 2, 5, 6, 8 do not spend too much time finding the general term(s) of the series.
The recursion relationships are typically as far as we’ll need to go.
In each of these problems, we take:

y(x) =
∞∑

n=0

an(x− x0)
n y′(x) =

∞∑
n=1

nan(x− x0)
n−1 y′′(x) =

∞∑
n=2

n(n− 1)an(x− x0)
n−2

2. In this case,

y′′ − xy′ − y =
∞∑

n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n

Notice that the middle sum begins with x1 rather than a constant (as the other sums
do). We could simply begin that index with zero, write the first sum to match the
other indices, then collect terms: Let k = n− 2, or n = k + 2 and:

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k

Now,
∞∑

k=0

(k + 2)(k + 1)ak+2x
k −

∞∑
n=0

nanx
n −

∞∑
n=0

anx
n =

∞∑
n=0

((n + 2)(n + 1)an+2 − nan − an) xn =
∞∑

n=0

((n + 2)(n + 1)an+2 − (n + 1)an) xn

This gives us the recursion relation:

(n + 2)(n + 1)an+2 − (n + 1)an = 0 ⇒ (n + 2)(n + 1)an+2 = (n + 1)an

an+2 =
an

n + 2

Notice that

a2 =
1

2
a0 a3 =

1

3
a1 a4 =

1

4
a2 =

1

4 · 2
a0 a5 =

1

5
a3 =

1

5 · 3
a1

a6 =
1

6
a4 =

1

6 · 4 · 2
a0 a7 =

1

7
a5 =

1

7 · 5 · 3
a1 a8 =

1

8
a6 =

1

8 · 6 · 4 · 2
a0

and so on. We can write the solution y(x) as:

y(x) = a0

(
1 +

1

2
x2 +

1

4 · 2
x4 +

1

6 · 4 · 2
x6 + . . .

)
+a1

(
x +

1

3
x3 +

1

5 · 3
x5 +

1

7 · 5 · 3
x7 + . . .

)
These two functions (in series form) make up our fundamental set.



5. Follows much the same procedure:

(1− x)y′′ + y = (1− x)
∞∑

n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n

Multiply by the 1− x and incorporate the x into the sum:

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n−1 +

∞∑
n=0

anx
n

Now our difficulty is that the middle sum begins with x1 but the others do not (begin-
ning with n = 1 would fix it). Also, the indices do not currently match. Start every
sum with the same thing:

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
k=0

(k + 2)(k + 1)ak+2x
k

and ∞∑
n=2

n(n− 1)anx
n−1 =

∞∑
n=1

n(n− 1)anx
n−1 =

∞∑
k=0

(k + 1)kak+1x
k

Now we can write the differential equation as a single power series:

∞∑
n=0

[(n + 2)(n + 1)an+2 − n(n + 1)an+1 + an] xn

Giving us the recursion relation:

an+2 =
n

n + 2
an+1 −

1

(n + 2)(n + 1)
an

In general, this means:
a2 = −1

2
a0

a3 = 1
3
a2 −1

6
a1

a4 = 1
2
a3 − 1

12
a2

a5 = 3
5
a4 − 1

20
a3

and so on. To get our fundamental set, solve these first with a0 = 1, a1 = 0, then with
a0 = 0, a1 = 1:

a2 = −1
2

a3 = −1
6

a4 = − 1
24

a2 = 0
a3 = −1

6

a4 = − 1
12

a5 = − 1
24

y(x) = a0

(
1− 1

2
x2 − 1

6
x3 − 1

24
x4 + . . .

)
+ a1

(
x− 1

6
x3 − 1

12
x4 − 1

24
x5 + . . .

)



6. Goes much the same as Problem 5. Be sure to get your sums to all match in terms of
beginning power of x and the index.

(2 + x2)y′′ − xy′ + 4y = (2 + x2)
∞∑

n=2

n(n− 1)anx
n−2 −

∞∑
n=0

nanx
n +

∞∑
n=0

4anx
n

We’ll try to manipulate the first sum to look like the second two:

(2 + x2)
∞∑

n=2

n(n− 1)anx
n−2 =

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n

The second sum begins with x2, but beginning with zero might be OK, since the first
two terms would be zero. Shift the index of the first sum to match (k = n − 2 or
n = k + 2):

∞∑
k=0

2(k + 2)(k + 1)ak+2x
k +

∞∑
k=0

k(k − 1)akx
k

Now we can collect all the terms together:

∞∑
n=0

[2(n + 2)(n + 1)an+2 + n(n− 1)an − nan + 4an] xk =

∞∑
n=0

[
2(n + 2)(n + 1)an+2 + (n2 − 2n + 4)an

]
xk

This gives us the recursion:

an+2 = − n2 − 2n + 4

2(n + 2)(n + 1)
an

or:

a2 = −a0 a3 = −1

4
a1 a4 = −1

6
a2 =

1

6
a0

a5 = − 7

40
a3 =

7

160
a1 a6 = −1

5
a4 = − 1

30
a0

and so on. Writing y in terms of its fundamental set,

y(x) = a0

(
1− x2 +

1

6
x4 − 1

30
x6 + . . .

)
+ a1

(
x− 1

4
x3 +

7

160
x5 + . . .

)



8. Be careful in that our power series is now based at x0 = 1 instead of x0 = 0:

xy′′ + y′ + xy = x
∞∑

n=2

n(n− 1)an(x− 1)n−2 +
∞∑

n=1

nan(x− 1)n−1 + x
∞∑

n=0

an(x− 1)n

The problem is that we cannot incorporate x into a series with an (x− 1) expansion.
However, note that we can write

x = x− 1 + 1 or x = 1 + (x− 1)

Making this substitution into the first sum,

(1+(x−1))
∞∑

n=2

n(n−1)an(x−1)n−2 =
∞∑

n=2

n(n−1)an(x−1)n−2+
∞∑

n=2

n(n−1)an(x−1)n−1

And similarly, into the last sum:

(1 + (x− 1))
∞∑

n=0

an(x− 1)n =
∞∑

n=0

an(x− 1)n +
∞∑

n=0

an(x− 1)n+1

Notice that our usual shift in the index won’t work here- 2 of the sums start with
(x − 1)1, the other 3 with constants. We will factor the constants out, and begin all
indices at n = 1. Here are the five sums:

∞∑
n=2

n(n− 1)an(x− 1)n−2 = 2a2 +
∞∑

n=1

(n + 2)(n + 1)an+2(x− 1)n

∞∑
n=2

n(n− 1)an(x− 1)n−1 =
∞∑

n=1

(n + 1)nan+1(x− 1)n

∞∑
n=1

nan(x− 1)n−1 = a1 +
∞∑

n=1

(n + 1)an+1(x− 1)n

∞∑
n=0

an(x− 1)n = a0 +
∞∑

n=1

an(x− 1)n

∞∑
n=0

an(x− 1)n+1 =
∞∑

n=1

an−1(x− 1)n

Now simply collect it all into a single sum and extract the recursion:

(2a2 + a1 + a0)+
∞∑

n=1

[(n + 2)(n + 1)an+2 + (n + 1)nan+1 + (n + 1)an+1 + an + an−1] (x− 1)n

with recursion:

an+2 = −(n + 1)2an+1 + an + an−1

(n + 2)(n− 1)
n = 1, 2, 3, . . .

To get our fundamental set, we would first set a0 = 1, a1 = 0. We could then compute
the coefficients to get y1(x). Next, set a0 = 0, a1 = 1 to get y2 by computing the
coefficients from our recursion.



15, 16 (We’ll do these in Maple later)

19. Optional.

20. Good practice with the Ratio Test.


