Chapter 3, Sect 5

Prof. D.R. Hundley

Whitman College

Fall 2010

DRHundley (WHI) Math 244 Oct 2010 1 / 13

Undetermined Coefficients

The Set Up

Find solutions to L(y) = g(t), where

$$L(y) = ay'' + by' + cy$$

The general form of the solution is written as:

$$y(t) = y_h(t) + y_p(t)$$

where y_h solves L(y) = 0 (the homogeneous part of the solution), and y_p solves L(y) = g(t) (the particular part of the solution).

DRHundley (WHI) Math 244 Oct 2010 2 / 13

Idea: The linear operator L(y) = ay'' + by' + cy

Applied to: Yields:

Polynomials Polynomials

sin, cos Combin. of sine and cos.

Exponentials Exponentials

Products of the above Products of the above

Example: L(y) = y'' - y' - 2y. Then:

$$L(e^t \sin(3t)) = 3e^t \cos(3t) - 11e^t \sin(3t)$$

$$L(t^2) = 2 - 2t - 2t^2$$

and so on.

DRHundley (WHI) Math 244 Oct 2010 3 / 13

Undetermined Coefficients

Second Idea: Superposition

If $L(y) = g_1(t) + g_2(t) + g_3(t)$ (and so on), we can break the solution into that many pieces:

- Let y_{p_1} solve $L(y) = g_1(t)$
- Let y_{p_2} solve $L(y) = g_2(t)$
- Let y_{p_3} solve $L(y) = g_3(t)$

Then $y_p(t) = y_{p_1}(t) + y_{p_2}(t) + y_{p_3}(t)$

Solve:
$$y'' + 2y' + y = t^2 + e^{2t} - \cos(t)$$

• Roots to the char eqn: r = -1, -1. Therefore,

$$y_h(t) = e^{-t}(C_1 + C_2 t)$$

DRHundley (WHI) Math 244 Oct 2010 5 / 13

Undetermined Coefficients

Example

• Solve the first particular solution with ansatz: $y_{p_1} = At^2 + Bt + C$. Substituting into the ODE, we get:

$$At^2 + (B + 4A)t + (2A + 2B + C) = t^2$$

Therefore, A=1, B=-4 and C=6, so that $y_{p_1}=t^2-4t+6$.

• Solve the second: $y_{p_2}(t) = Ae^{2t}$:

$$9Ae^{2t} = e^{2t} \implies y_{p_2}(t) = \frac{1}{9}e^{2t}$$

• Solve the third: $y_{p_3}(t) = A\cos(t) + B\sin(t)$:

$$-2A\sin(t) + 2B\cos(t) = -\cos(t)$$
 \Rightarrow $B = -\frac{1}{2}, A = 0$

Therefore, $y_{p_3}(t) = -\frac{1}{2}\sin(t)$

DRHundley (WHI) Math 244 Oct 2010 6 / 13

In conclusion, given $y'' + 2y' + y = t^2 + e^{2t} - \cos(t)$, the general solution is:

$$y(t) = e^{-t}(C_1 + C_2 t) + t^2 - 4t + 6 + \frac{1}{9}e^{2t} - \frac{1}{2}\sin(t)$$

DRHundley (WHI) Math 244 Oct 2010 7 / 13

Undetermined Coefficients

The Method of Undetermined Coefficients

To find the particular solution, we will guess that its form is the same as g(t) (Also see table in text):

$$\begin{array}{ll} \underline{g_i(t) \text{ is }:} & \text{The ansatz for } y_{p_i}: \\ \hline P_n(t) & t^s(a_nt^n+\ldots+a_2t^2+a_1t+a_0) \\ P_n(t) \mathrm{e}^{\alpha t} & t^s \mathrm{e}^{\alpha t}(a_nt^n+\ldots+a_2t^2+a_1t+a_0) \\ P_n(t) \mathrm{e}^{\alpha t} \left\{ \begin{array}{ll} \sin(\beta t) & t^s \mathrm{e}^{\alpha t} \cos(\beta t)(a_nt^n+\ldots+a_2t^2+a_1t+a_0) + \\ \cos(\beta t) & t^s \mathrm{e}^{\alpha t} \sin(\beta t)(b_nt^n+\ldots+b_2t^2+b_1t+b_0) \end{array} \right. \\ \text{where } s=0,1, \text{ or } 2. \end{array}$$

Solve
$$y'' + 2y' + y = e^{-t}$$

Problem: With the ansatz $y_p = Ae^{-t}$, we get

$$0 = e^{-t}$$

The solution: Multiply the ansatz by t until it is no longer part of the homogeneous solution (e.g., until $L(y_p) \neq 0$).

Since $y_h(t) = C_1 e^{-t} + C_2 t e^{-t}$, we will need to multiply by t^2 . Our ansatz is now

$$y_p = At^2 e^{-t}$$

Note: Not a full second degree polynomial. Substitution yields A = 1/2, so the solution is:

$$y(t) = e^{-t} \left(C_1 + C_2 t + \frac{1}{2} t^2 \right)$$

DRHundley (WHI)

Math 244

Oct 2010

9 / 13

Undetermined Coefficients

Example

Let $y'' - y' - 2y = -4te^t + e^{2t}$. Give your (final) ansatz:

$$r = -1, 2 \implies y_h(t) = C_1 e^{-t} + C_2 e^{2t}$$

$$y_{p_1}(t) = (At + B)e^t \Rightarrow (A - 2B)e^t - 2Ate^t = -4te^t$$

so that

$$y_{p_1}(t) = (1+2t)e^t$$

$$y_{p_2}(t) = Ate^{2t}$$

Substituting, we find: $3Ae^{2t} = e^{2t}$, so A = 1/3. The full solution is

$$y = C_1 e^{-t} + C_2 e^{2t} + (1+2t)e^t + \frac{1}{3}te^{2t}$$

DRHundley (WHI) Math 244 Oct 2010 10 / 13

Give the ansatz for the particular part of the solution, if

$$y'' + 2y' + y = te^t \sin(2t)$$

Is this correct?

$$y_p(t) = e^t (At + B)(C\sin(t) + D\cos(t))$$

No! The table says that we need a polynomial for each sine and cosine. That is,

$$y_p(t) = e^t ((At + B)\sin(2t) + (Ct + D)\cos(2t))$$

And in fact, the full solution to the DE is:

$$e^{-t}\left(C_1+C_2t\right)+e^t\left(-rac{1}{8}t+rac{1}{16}
ight)\cos(2t)-rac{1}{16}e^t\sin(2t)$$

DRHundley (WHI)

Math 244

Oct 2010

11 / 13

Undetermined Coefficients

Example

An example we can do by hand: $y'' + y = t - e^t$

$$y_h(t) = C_1 \cos(t) + C_2 \sin(t)$$

Now the particular solution (break it up):

$$y_{p_1}(t) = At + B \quad \Rightarrow \quad At + B = 1 \quad \Rightarrow \quad y_{p_1}(t) = t$$

And the other part

$$y_{p_2}(t) = Ae^t \quad \Rightarrow \quad 2Ae^t = -e^t$$

Therefore, the full solution is:

$$y(t) = C_1 \cos(t) + C_2 \sin(t) + t - \frac{1}{2}e^t$$

- For each DE, give the (final) form of the ansatz. For your convenience, the roots to the characteristic equation are also provided:
 - y'' + y' = 3t with r = 0, -1 SOLN: $y_p = t(At + B)$
 - $y'' 5y' + 6y = t\sin(3t) + e^{2t} \text{ with } r = 2,3$ $y_p = (At + B)\sin(3t) + (Ct + D)\cos(3t) + Ate^{2t}$
 - $y'' + 2y' + 5y = 3\cos(2t)$ with $r = -1 \pm 2i$ $y_p = A\cos(2t) + B\sin(2t)$
 - $y'' + \omega^2 y = \cos(\omega t)$ with $r = \pm \omega t$ $y_p = t(A\sin(\omega t) + B\cos(\omega t))$
- 2 Come up with a DE and a forcing function g so that you must multiply your ansatz by t^2 .
- Oculd you use complex roots for the previous question?