Chapter 3, Computing Solutions

From the theory, we know that every initial value problem:

$$ay'' + by' + cy = g(t)$$
 $y(t_0) = y_0$ $y'(t_0) = v_0$

has a solution that can be expressed as:

$$y(t) = c_1 y_1 + c_2 y_2 + y_p$$

where y_1, y_2 form a fundamental set of solutions to the homogeneous equation, and $y_p(t)$ is the (particular) solution to the nonhomogeneous equation.

We first consider the homogeneous ODE:

Solving ay'' + by' + cy = 0

Form the associated characteristic equation (built by using $y = e^{rt}$ as the ansatz):

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

so that the solutions depend on the discriminant, $b^2 - 4ac$ in the following way (y_h refers to the solution of the homogeneous equation):

• $b^2 - 4ac > 0 \Rightarrow$ two distinct real roots r_1, r_2 . The general solution is:

$$y_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

If a, b, c > 0 (as in the Spring-Mass model) we can further say that r_1, r_2 are negative. We would say that this system is OVERDAMPED.

• $b^2 - 4ac = 0 \Rightarrow$ one real root r = -b/2a. Then the general solution is:

$$y_h(t) = e^{-(b/2a)t} (C_1 + C_2 t)$$

If a, b, c > 0 (as in the Spring-Mass model), the exponential term has a negative exponent. In this case (one real root), the system is CRITICALLY DAMPED.

• $b^2 - 4ac < 0 \Rightarrow$ two complex conjugate solutions, $r = \lambda \pm i\mu$. Then the solution is:

$$y_h(t) = e^{\lambda t} \left(C_1 \cos(\mu t) + C_2 \sin(\mu t) \right)$$

If a, b, c > 0, then $\lambda < 0$. In the case of complex roots, the system is said to the UNDERDAMPED. If $\lambda = 0$ (this occurs when there is no damping), we get pure periodic motion, with period $2\pi/\mu$.

Solving y'' + p(t)y' + q(t)y = 0

Given $y_1(t)$, we can solve for a second linearly independent solution to the homogeneous equation, y_2 , by one of two methods:

• By use of the Wronskian: There are two ways to compute this,

$$- W(y_1, y_2) = C e^{-\int p(t) dt}$$
 (This is from Abel's Theorem)
$$- W(y_1, y_2) = y_1 y'_2 - y_2 y'_1$$

Therefore, these are equal, and y_2 is the unknown: $y_1y'_2 - y_2y'_1 = Ce^{-\int p(t) dt}$

• Reduction of order, where $y_2 = v(t)y_1(t)$.

Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

• Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay'' + by' + cy, acting on certain classes of functions, returns the same class. In summary, the table from the text:

if $g_i(t)$ is:	The ansatz y_{p_i} is:
$P_n(t)$	$t^s(a_0 + a_1t + \dots a_nt^n)$
$P_n(t) \mathrm{e}^{\alpha t}$	$t^s \mathrm{e}^{\alpha t} (a_0 + a_1 t + \ldots + a_n t^n)$
$P_n(t) \mathrm{e}^{\alpha t} \sin(\mu t)$ or $\cos(\mu t)$	$t^{s} \mathrm{e}^{\alpha t} \left((a_0 + a_1 t + \ldots + a_n t^n) \sin(\mu t) \right)$
	$+ (b_0 + b_1 t + \ldots + b_n t^n) \cos(\mu t))$

The t^s term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or t^2 so that no term of the ansatz is included as a term of the homogeneous solution.

• Variation of Parameters: Given y'' + p(t)y' + q(t)y = g(t), with y_1, y_2 solutions to the homogeneous equation, we write the ansatz for the particular solution as:

$$y_p = u_1 y_1 + u_2 y_2$$

From our analysis, we saw that u_1, u_2 were required to solve:

$$\begin{array}{ll} u_1'y_1 + u_2'y_2 &= 0\\ u_1'y_1' + u_2'y_2' &= g(t) \end{array}$$

From which we get the formulas for u'_1 and u'_2 :

$$u_1' = \frac{-y_2g}{W(y_1,y_2)} \qquad u_2' = \frac{y_1g}{W(y_1,y_2)}$$