## Quiz 2 Solutions

1. Set up and solve the IVP corresponding to the amount of salt in the tank at time t.

A tank originally contains 100 gallons of water with a concentration of 1 pound of salt per gallon. Brine is pouring into the tank at a rate of 4 gallons per minute, and the incoming brine has a concentration of 1/2 pound of salt per gallon. The well-mixed solution is draining out of the tank at a rate of 3 gallons per minute.

SOLUTION: Let Q(t) be the amount of salt in the tank at time t. Then

$$Q' = 2 - \frac{3}{100 + t}Q \qquad Q(0) = 100$$

The DE is a linear differential equation, and the integrating factor is  $(100 + t)^3$ . The solution is:

$$Q(t) = \frac{1}{2}(100 + t) + \frac{100^4}{2(100 + t)^3}$$

2. (a) Find the (largest) interval on which the solution is valid (from the Existence and Uniqueness Theorem, if possible). HINT: Do not solve the IVP unless you have to.

$$(4 - t^2)y' + 2ty = 3t^2 y(-5) = -1$$

SOLUTION: Put the equation in standard form for a linear DE:

$$y' + \frac{2t}{4 - t^2}y = \frac{3t^2}{4 - t^2}$$

The expression for p(t) has vertical asymptotes at  $t = \pm 2$ . Looking at the initial time  $(t_0 = -5)$ , we should choose the interval  $(-\infty, -2)$  for the interval on which the solution is valid.

(b) Compute the given integral:  $\int \frac{1-x}{1+x^2} dx$  SOLUTION:

$$\int \frac{1}{1+x^2} dx - \int \frac{x}{1+x^2} = \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C$$

(We don't need absolute value signs with the log;  $1 + x^2$  is always positive).

(c) Compute the given integral:  $\int e^{-2t} \sin(3t) dt$ 

SOLUTION: Use the table to integrate by parts twice- You should get:

$$-\frac{e^{-2t}}{13} \left(3\cos(3t) + 2\sin(3t)\right) + C$$

3. (a) Find all value(s) of r so that  $y = t^r$  solves the differential equation:

$$2t^2y'' + 3ty' - y = 0$$

SOLUTION: Substitute  $y = t^r$ ,  $y' = rt^{r-1}$  and  $y'' = r(r-1)t^{r-2}$  into the DE. Factor out  $t^r$ , and you should get:

$$t^r(2r^2 + r - 1) = 0$$

which should be true for all t (so we just need to solve the quadratic). The values of r are 1/2 and -1.

1

(b) Find all value(s) of k so that  $e^{kt}$  solves the differential equation:

$$y'' + y' - 6y = 0$$

SOLUTION: Similarly, substitute  $y = e^{kt}$ ,  $y' = ke^{kt}$  and  $y'' = k^2e^{kt}$  into the DE. You should find that

$$k^2 + k - 6 = 0 \implies k = 3, -2$$

4. Let y' = y(y-2) with y(0) = 1. Treating this as a Bernoulli Equation (See pg. 77), solve the IVP (explicitly).

SOLUTION: Rewriting the IVP, we get:  $y' = y^2 - 2y$  or  $y' + 2y = y^2$ , which is Bernoulli. Dividing by  $y^2$ , we have:

$$\frac{y'}{y^2} + 2 \cdot \frac{1}{y} = 1 \quad \Rightarrow \quad v = \frac{1}{y}, v' = -\frac{y'}{y^2} \quad \Rightarrow \quad -v' + 2v = 1 \quad \Rightarrow \quad v(t) = \frac{1}{2} + Ae^{2t}$$

Now back-substitute:

$$\frac{1}{y} = \frac{1}{2} + Ae^{2t} \quad \Rightarrow \quad y(t) = \frac{2}{1 + e^{2t}}$$

5. Let y' = y(y-2) (as before). Draw the phase plot (or equivalently, the phase diagram), and the corresponding direction field. On the phase plot, indicate where y is increasing/decreasing and concave up/concave down. On the direction field, indicate the equilibrium solutions and whether or not the equilibria are stable or unstable.

SOLUTION: You should find that y=0 is stable, y=2 is unstable, and:

For 
$$y < 0$$
 y is increasing

$$y$$
 is CD

$$0 < y < 1$$
 y is decreasing

$$y$$
 is CU

$$1 < y < 2$$
 y is decreasing

$$y$$
 is CD

$$y > 2$$
 y is increasing

$$y$$
 is CU