Solutions to the Review Questions

Short Answer/True or False

1.

2.

True or False, and explain: If ¢’ = y + 2¢, then 0 = y + 2¢ is an equilibrium solution.
False: (a) Equilibrium solutions are only defined for autonomous differential equations, (b) This is an
isocline for a slope of zero, and (¢) y = —2t is not a solution.

e The Existence and Uniqueness Theorem for linear first order initial value problems (IVPs).

Let y' + p(t)y = g(t) with y(to) = yo.

If p, g are continuous on an open interval I containing ¢y, then a unique solution exists to the IVP.
In addition, the solution is valid on I.

(Note: The interval I is a single (connected) interval, not two or more intervals).

e The general Existence and Uniqueness Theorem for first order initial value problems (IVPs).
Let y' = f(t,y) with y(to) = yo.
If f is continuous on an open rectangle containing (g, yo), then a solution exists.
If 0f /0y is continuous on an open rectangle containing (¢, yo), then the solution is unique.
There is a small interval about ¢, on which the (unique) solution will exist, but we cannot predict

what it will be in advance- We need to actually solve the IVP.
Let y' = f(y). It is possible to have two stable equilibrium with no other equilibrium between them.

It is, but only if f is not continuous. If f is continuous (which is a normal assumption on f), then it
is not possible (draw a picture in the phase plane and you’ll see why- FYT, it is a consequence of the
Intermediate Value Theorem).

e What is a linear first order differential equation.
A linear first order DE is any DE that can be expressed as:

Y +p(t)y = g(t)

e What is an n*" order differential equation?

The order of a differential equation refers to the integer of the highest derivative. An n*® order DE
would have an n*! derivative as the highest derivative.

What’s the difference between:
“The domain of y(t)” and “The time interval for which y(¢) is a solution to the DE”?

When we talk about the time interval on which a solution is valid, the interval must be a single (con-
nected) interval. A domain can be any combination of points, intervals, etc.

Let % =1+ y2. Then the solution will be valid for all .
False. Solving the DE:

1 -1
/Wdy:/dt = tan (y)=t+C = y=tan(t+c)

The tangent function has vertical asymptotes at ¢t + ¢ = +7, j:%”, ..., so there will be a strip of time of
length 7 on which the solution will be valid (but no more).

To solve v/ = y'/3, we separate variables:
yil/ 3dy = dt

Before going further, it is good practice to note that the previous step is valid, as long as y # 0. The
case that y = 0 can be taken separately- In fact, we see that y(¢) = 0 is an equilibrium solution that
satisfies the initial condition.



Going on, we integrate:

3 2 2 3/2
§y2/3=t—|—01 = 92/32575"'02 = y:<3t—|—02>

We can solve for Cy using the initial condition: 0 = Cs, so that

2 3/2
(3

We can verify that this is indeed a solution by substituting it back into the DE (not necessary; just a

way of double-checking yourself):
g3 ()2 2\
2\ 3 3 3

1/3
e (2t 3/271/ e 1/2
I3 —\3

Therefore, this is indeed a second solution to the IVP.

And on the other hand,

Of course, the Existence and Uniqueness Theorem cannot be “violated” since it is a theorem, but in this
case, the conditions are not met:

y/ = f(tvy) = f(tvy) = y1/3

In this case, f is continuous at (0,0) but df/dy is not.

Solve:
1 @ _ T
" dx x
Linear: y' + %y = x Solve with an integrating factor of z? to get:
Sl..C
4 x?

2. (z+vy)de — (x —y)dy = 0. Hint: Let v = y/x.
Given the hint, rewrite the DE:

dy z+y 1+4+(@y/z) 1+v

dr -y 1—(y/z) 1-vw

With the substitution zv = y, we get the substitution for dy/dx:

v+av =y
So that the DE becomes:
, 14w , 14w I1+v—v(l—v) 1+22
v+ xv = = U = —v = =
1—-w 1—w 14w 1—wv

The equation is now separable:

1—vw 1 1 v
——dv=—d ——dv — dv =1
o v=—dz = /1+v2 v /1+v2 v=lnlz|+C

Therefore,
1
tan"!(v) — 3 In(1+v*) =In|z|+C

Lastly, back-substitute v = y/x.



10.

11.

12.

dy 2v+y
- = 0) =0.
dr  3+3y?>—=x y(0)

This is exact. The solution is, with y(0) = 0,
—2? —azy+3y+14°=0

dy  2zy+y*+1

de 2 + 2zy

This is exact. The solution is: 2%y + 2y®> +x =c

(C%’ = 2cos(3t) y(0) =2

This is linear and separable. y(t) = 2 sin(3t) + 2, and the solution is valid for all time.

'—3y=0 y(0) = 200. State the interval on which the solution is valid.

This is linear and separable. As a linear equation, the solution will be valid on all ¢ (since p(t) =
The solution is y(t) = 200e(1/2)?

This is separable (or Bernoulli):

1
/y_Zdy:/(l—Qa?)dx = —;zm—xQ—i—C

Put in the initial condition (IC): 6 = 0 + C. Now finish solving explicitly:

1 1
y(x):xQ—z—(S: (x=3)(z+2)

The solution is valid on the interval (—2, 3).
v-gy=e"  y(0)=1
This is linear (but not separable). y(t) = 2e? + 1e(1/2)t

y' =393 —y)
Autonomous (and separable). Integrate using partial fractions:

[saat=z)®

Simplify your answer for y by dividing numerator and denominator appropriately to get:

3
vt = {Aje o 11

sin(2t) dt 4 cos(3y) dy =0
Separable (and/or exact): ! cos(2t) + 1 sin(3y) = C

y/ — ny

S bl L
eparable: y = ——————
P YT T2t —C

dy _ ity

at ~ ¢

Separable: y’ = efeY, so:

/e*ydy:/etdt

and —e ¥ =et +C

N



dy L= 1
dx v= 1+4+e*
Linear: ¢y +y = 1/(1 + e%), and the LF. is e”. Therefore,

xr _ ex
Oy

To integrate, use u, du substitution. The solution is then:

13.

In(l1+e*)+C

ez

4. (BPy+ty —y)dt + (t2y — 2t2)dy = 0
Does not seem to be exact. Try separating variables:
dy  —y(#®+t+1)
dt — (y—2)-t2

SO:

—9 1
ydy:—(1++t—2> dt
Y t

(NOTE: Now the DE is also exact).
The solution is: —y + 2In|y| = — (t +1Inlt| — % + C’)

15. 22y? + 2y + (222%y + 2x)y’ =0
Exact. xz%y? + 22y = C.

d
16. x3£ =1 2%

Linear: y' + %y = 273, with integrating factor x2:
Injz|+C
Y= —>5
x
17. This is separable:

1
/Tyzdy:/2+2xdx = tan " '(y) =22+ 22 +C

Solve for C: 0 = 0+ C, so the solution is:
Yy = tan (2£E + x2)

If we wanted to continue finding the interval on which the solution is valid (not asked for), we could by
solving for x:
2 m 2 m
2 = = 2 = — =
T° + 2 5 T° + 2 >

The solutions to the first are approx 0.6033 and —2.6033. The solutions to the second are not real-
Therefore, the interval is (—2.6033,0.6033). Also for fun, we include the plot of the solution below, with
the direction field.

Misc.
1. Construct a linear first order differential equation whose general solution is given by:
C
y(t) =t—3+ th
Construct 3. The idea will be to produce a linear DE. Therefore, we need to construct ¢y’ and compare

it to y:
y =1-20t3
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Figure 1: Direction field and solution curve to y' = 2(1 + z)(1 + y?). Note the vertical asymptotes.

Add this to some multiple (¢’s are allowed) of y to get of the arbitrary constant. In this case,

2 6 6
y’+¥y:(1—2C’t’3)+2—g+20t*3:3—¥

or,
ty +2y=3t—6

. Construct a linear first order differential equation whose general solution is given by:
y(t) = 2sin(3t) + Ce™ %

y = 6cos(3t) — 2Ce™?
so that: y' + 2y = 4sin(3t) + 6 cos(3t).
. Construct an autonomous differential equation that has stable equilibria at y(¢) = 1 and y(¢) = 3, and
one unstable equilibrium at y(¢) = 2. (Hint: Draw the phase plot first).

The formula would be something like:

Y =—ay—1)(y—2)(y —3)
with a > 0.

. Suppose we have a tank that contains M gallons of water, in which there is Qg pounds of salt. Liquid is
pouring into the tank at a concentration of » pounds per gallon, and at a rate of v gallons per minute.
The well mixed solution leaves the tank at a rate of v gallons per minute.

Write the initial value problem that describes the amount of salt in the tank at time ¢, and solve:

aQ Y

dt =Ty - MQa Q(O) = QO

The solution is:
Q=1rM+(Qy — rM)e~ (/M)

. Referring to the previous problem, if let let the system run infinitely long, how much salt will be in the
tank? Does it depend on Q¢? Does this make sense?

Note that the differential equation for @) is autonomous, so we could do a phase plot (line with a negative
slope). Or, we can just take the limit as ¢ — oo and see that @ — rM. This does not necessarily depend
on Qp; if Qg starts at equilibrium, M, then @ is constant.

It does make sense. The incoming concentration of salt is » pounds per gallon, so we would expect the
long term concentration to be the same, rM/M = r.



6. Modify problem 5 if: M = 100 gallons, » = 2 and the input rate is 2 gallons per minute, and the output
rate is 3 gallons per minute. Solve the initial value problem, if Q¢ = 50.

Q 3 B
dat 100+tQ @(0) =50

This goes from being autonomous to linear. In this case, use an integrating factor,

efp(t) dt _ e3fﬁdt — 3In[100+¢] _ (100 + t)° +> 100

Continuing, we get:
~ 50,000,000

Y=o

+ 100+ ¢

7. Suppose an object with mass of 1 kg is dropped from some initial height. Given that the force due to
gravity is 9.8 meters per second squared, and assuming a force due to air resistance of %U, find the initial
value problem (and solve it) for the velocity at time t¢.

The general model is: mv’ = mg — kv. In this case, m =1, g = 9.8 and k = 1/2. Therefore,

1
v =98 — 51}

Which is linear (and autonomous). Since the object is being dropped, the initial velocity is zero.

Solve it:
u(t) = 19.6 (1 - e*<1/2>t)

8. (Continuing with the last problem): At ¢ = 10 minutes, the force due to air resistance suddenly changes
to 10v. Model the velocity for ¢t > 10 (set up and solve the IVP):

The dynamics are now:

v'=9.8—10v
In order to make v continuous, the initial condition used here will be where the velocity left off after the
last problem.

If we make time re-start at zero (so that ¢ is minutes after the previous 10), we would make v(0) =
19.6 (1 — e’5), which is approximately 19.467. The solution for ¢ minutes after the original 10 minutes
is:

v(t) = 0.98 + 18.487¢ 10

NOTE: If you did not restart time, the initial condition would be the same, except v(10) ~ 19.467, and
the solution would be scaled:
v(t) = 0.98 + (18.487 x ¢100)e 10t

valid for ¢ > 10.
9. (Continuing with the falling object): In a direction field, draw a sketch of the solution. HINT: These
are autonomous differential equations, so you should draw the phase plots first!

First get the equilibrium solutions:

9.8
v 9.8 9.6 V=75 0.98

Now the first phase plot is a line with negative slope through the y— axis (horizontal axis) at 19.6 (a
stable equilibrium).

At t = 10, the dynamics change (note that on the direction field), and we have a line with negative slope
(a stable equilibrium) at 0.98-

Therefore, initially the velocity moves towards equilibrium at 19.8- When the dynamics change, the
velocity will now move towards the new equilibrium at 0.98.

Your direction field should look something like Figure 2.
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Figure 2: A graph of the velocity for the falling object problem. Note where the equilibria are: v = 19.6 for
t < 10 and v = 0.98 for ¢ > 10.

10. (Very similar to the quiz and the “Extra Practice”)

(a) Write the autonomous differential equation for modeling population in an environment with a
“carrying capacity” of k people.

v =ay(k—y) wherea,k>0

(b) Sketch the phase diagram.
The phase diagram is a parabola opening downwards, with horizontal intercepts at y = 0 and y = k.
The midpoint is y = k/2, since a parabola is symmetric about its vertex.

(c¢) Find and classify the equilibrium.
You should find that y = 0 is unstable, and y = k is stable.

(d) Draw a sketch of y on the direction field, paying particular attention to where y is increas-
ing/decreasing and concave up/down.
See the quiz solutions and the solutions to the Extra Practice.

(e) Find the analytic (general) solution. Solve the equation for y (that is, do not leave your answer in
implicit form).
It is separable- Integrate the expression in y using partial fractions:

1 1
k
t =
= y() 1_’_Befo¢kt



