Chapter 3, Sect 5

Prof. D.R. Hundley

Whitman College

Fall 2012

The Set Up

Find solutions to

$$ay'' + by' + cy = g(t)$$

For certain types of g(t) (g(t) is called the forcing function).

If $y_h(t)$ is the general solution to ay'' + by' + cy = 0, and:

- $y_{p_1}(t)$ solves $ay'' + by' + cy = g_1(t)$
- $y_{p_2}(t)$ solves $ay'' + by' + cy = g_2(t)$
- and so on...
- $y_{p_n}(t)$ solves $ay'' + by' + cy = g_n(t)$

then the full general solution to:

$$ay'' + by' + cy = g_1(t) + g_2(t) + \cdots + g_n(t)$$

is:

$$y_h(t) + y_{p_1}(t) + y_{p_2}(t) + \cdots + y_{p_n}(t)$$

Proof: From the last slide, let

$$L(y) = ay'' + by' + cy$$

Then L is a linear operator, with $L(y_h)=0$, $L(y_{p_1}(t))=g_1(t)$, $L(y_{p_2}(t))=g_2(t)$, and so on. Therefore,

$$L(y_h + y_{p_1} + y_{p_2} + \cdots + y_{p_n}) = 0 + g_1 + g_2 + \cdots + g_n$$

by the linearity of the operator L.

KEY IDEA:

To solve

$$ay'' + by' + cy = g(t)$$

we need BOTH y_h and y_p . Once we have them, the general solution is the sum:

$$y(t) = y_h(t) + y_p(t)$$

(The homogeneous part and the particular part of the solution).

Secondary Key Idea: $y_p(t)$ can be found by breaking g(t) into a sum of like functions (we'll see examples).

Sections 3.1-3.4: Compute y_h

Sections 3.5, 3.6: How to find y_p .

"The derivative of a polynomial is a polynomial." Guess the form of $y_p(t)$ for the DE:

$$y'' + 2y' + y = t^2 - 1$$

ANSWER: Guess a general polynomial of degree 2: $y = At^2 + Bt + C$ SUBSTITUTE into the DE to solve for A, B, C:

$$(2A) + 2(2At + B) + (At^2 + Bt + C) = t^2 - 1$$

Now, equate coefficients on both sides:

The particular part of the solution is: $y_p(t) = t^2 - 4t + 5$. What is the general solution? $e^{-t}(C_1 + C_2t) + t^2 - 4t + 5$

This is called the "Method of Undetermined Coefficients":

Guess the *form* of the particular solution. Substitute into the DE solving for the constants.

We have seen that:

If g(t) is a polynomial of degree n, we guess that y_p is a polynomial of degree n.

Suppose $g(t) = e^{3t}\cos(2t) + t\sin(2t)$. What would we do for our guess?

Example

SOLUTION: First break up the guess as $y_{p_1}(t)$ and $y_{p_2}(t)$. Then

$$y_{p_1} = e^{3t} (A\cos(2t) + B\sin(2t))$$

and for the second, guess a full linear polynomial times a sine AND cosine:

$$y_{p_2} = (At + B)\sin(2t) + (Ct + D)\cos(2t)$$

How would your guess change if $g(t) = e^{3t} \cos(2t) + te^{3t} \sin(2t)$? Now we would NOT split the guess:

$$y_p = e^{3t}((At + B)\cos(2t) + (Ct + D)\sin(2t))$$

Suppose $g(t) = t^2 e^{3t}$. What would we do for our guess?

Example

SOLUTION:

$$y_p = e^{3t}(At^2 + Bt + C)$$

The Method of Undetermined Coefficients

To find the particular solution, we will guess that its form is the same as g(t) (Also see table in text):

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$a_nt^n+\ldots+a_2t^2+a_1t+a_0$
$P_n(t)e^{\alpha t}$	$\mathrm{e}^{\alpha t}(a_nt^n+\ldots+a_2t^2+a_1t+a_0)$
$P_n(t)e^{\alpha t} \begin{cases} \sin(\beta t) \\ \cos(\beta t) \end{cases}$	$e^{\alpha t}\cos(\beta t)(a_nt^n+\ldots+a_2t^2+a_1t+a_0)+$
"\' \ $(\cos(\beta t)$	$\mathrm{e}^{\alpha t} \sin(\beta t) (b_n t^n + \ldots + b_2 t^2 + b_1 t + b_0)$

Solve
$$y'' + 2y' + y = e^{-t}$$

Problem: With the ansatz $y_p = Ae^{-t}$, we get

$$0 = e^{-t}$$

The solution: Multiply the ansatz by t until it is no longer part of the homogeneous solution (e.g., until $L(y_p) \neq 0$).

Since $v_h(t) = C_1 e^{-t} + C_2 t e^{-t}$, we will need to multiply by t^2 . Our ansatz is now

$$y_p = At^2 e^{-t}$$

Note: Not a full second degree polynomial. Substitution yields A = 1/2, so the solution is:

$$y(t) = e^{-t} \left(C_1 + C_2 t + \frac{1}{2} t^2 \right)$$

Example

Let $y'' - y' - 2y = -4te^t + e^{2t}$. Give your (final) ansatz: First, get y_h for comparison later:

$$r = -1, 2 \implies y_h(t) = C_1 e^{-t} + C_2 e^{2t}$$

Now, for the first part of g, guess a degree 1 poly times exponential:

$$y_{p_1}(t) = (At + B)e^t$$

Check against the homogeneous solution: te^t and e^t are NOT solutions. Now for the second function:

$$y_{p_2}(t) = C e^{2t}$$

We see e^{2t} does solve L(y)=0, so multiply by t: $y_{p_2}(t)=Cte^{2t}$ The final ansatz for the form of the particular solution is then:

$$(At + B)e^t + Cte^{2t}$$

The final version of the Method (Same as the Table in the text):

The Method of Undetermined Coefficients

To find the particular solution, we will guess that its form is the same as g(t) (Also see table in text):

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$
$P_n(t)e^{\alpha t}$	$t^s e^{\alpha t} (a_n t^n + \ldots + a_2 t^2 + a_1 t + a_0)$
$P_n(t)e^{\alpha t} \left\{ egin{array}{l} \sin(eta t) \\ \cos(eta t) \end{array} ight.$	$t^{s}e^{\alpha t}\cos(\beta t)(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})+$
$\int_{-\infty}^{\infty} n(t) dt = \int_{-\infty}^{\infty} \cos(\beta t)$	$t^s e^{\alpha t} \sin(\beta t) (b_n t^n + \ldots + b_2 t^2 + b_1 t + b_0)$
where $s = 0, 1$, or 2.	

Example

Give the ansatz for the particular part of the solution, if

$$y'' + 2y' + y = te^t \sin(2t)$$

First, check y_h :

$$r = -1, -1 \implies y_h = e^{-t}(C_1 + C_2 t)$$

For y_p : Is this correct?

$$y_p(t) = e^t (At + B)(C\sin(t) + D\cos(t))$$

No! The table says that we need a polynomial for each sine and cosine. That is,

$$y_p(t) = e^t ((At + B)\sin(2t) + (Ct + D)\cos(2t))$$

For each DE with the given forcing function, give the (final) form of the ansatz. For your convenience, the roots to the characteristic equation are also provided:

•
$$g(t) = 3t$$
 with $r = 0, -1$ SOLN: $y_p = t(At + B)$

•
$$g(t) = t \sin(3t) + e^{2t}$$
 with $r = 2, 3$
 $y_p = (At + B)\sin(3t) + (Ct + D)\cos(3t) + Ate^{2t}$

• $g(t) = 3\cos(2t)$ with $r = -1 \pm 2i$

$$y_p = A\cos(2t) + B\sin(2t)$$

• $g(t) = \cos(\omega t)$ with $r = \pm \omega i$

$$y_p = t(A\sin(\omega t) + B\cos(\omega t))$$