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Undetermined Coefficients

The Set Up
Find solutions to
ay” + by’ +cy = g(t)

For certain types of g(t)
(g(t) is called the forcing function).
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If yn(t) is the general solution to ay” + by’ + cy = 0, and:
® yp, (t) solves ay” + by’ + cy = gi(t)
® yp,(t) solves ay” + by’ + cy = g(t)
@ and so on...
@ yp,(t) solves ay” + by’ + cy = gn(t)
then the full general solution to:

ay" + by’ + cy = gi(t) + ga(t) + -+ + gn(t)

Yh(t) + Ypi (8) + Yoo (8) + - - + ¥, ()
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Undetermined Coefficients

Proof: From the last slide, let
Ly) = ay" + by + cy

Then L is a linear operator, with L(yp) =0, L(yp, (t)) = g1(t),
L(yp,(t)) = &(t), and so on. Therefore,

Lyn+ Yo + Yo+ +¥p) =0+81+ 8+ +8n

by the linearity of the operator L.
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KEY IDEA:

To solve
ay” + by' + cy = g(t)

we need BOTH yj and y,. Once we have them, the general solution is the
sum:

y(t) = yn(t) + yp(t)

(The homogeneous part and the particular part of the solution).
Secondary Key Idea: y,(t) can be found by breaking g(t) into a sum of
like functions (we'll see examples).

Sections 3.1-3.4: Compute yy

Sections 3.5, 3.6: How to find y,.
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Undetermined Coefficients

“The derivative of a polynomial is a polynomial.”
Guess the form of y,(t) for the DE:

y”—l—2y'+y=t2—1

ANSWER: Guess a general polynomial of degree 2: y = At?> + Bt + C
SUBSTITUTE into the DE to solve for A, B, C:

(2A) +2(2At + B) + (At> + Bt + C) = t* — 1

Now, equate coefficients on both sides:

Coeff for t2 | A =1
Coeff fort |4A +B =0 A=1,B=—-4C=5
Constants | 2A 4+2B +C =-1

The particular part of the solution is: y,(t) = t? — 4t + 5.
What is the general solution?e™t(Cy + Cot) +t? — 4t +5
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Undetermined Coefficients

This is called the “Method of Undetermined Coefficients”:

Guess the form of the particular solution. Substitute into the DE solving
for the constants.

We have seen that:
If g(t) is a polynomial of degree n, we guess that y, is a polynomial of
degree n.
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Suppose g(t) = 3t cos(2t) + tsin(2t). What would we do for our guess?

Example
SOLUTION: First break up the guess as yp, (t) and yp,(t).Then

Yp, = 35(Acos(2t) + Bsin(2t))
and for the second, guess a full linear polynomial times a sine AND cosine:

Yp, = (At + B)sin(2t) + (Ct + D) cos(2t)

How would your guess change if g(t) = e3t cos(2t) + te3tsin(2t)?
Now we would NOT split the guess:

¥p = ((At + B) cos(2t) + (Ct + D)sin(2t))
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Undetermined Coefficients

Suppose g(t) = t?e3. What would we do for our guess?

Example

SOLUTION:
yp = {(At> + Bt + C)
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Undetermined Coefficients

The Method of Undetermined Coefficients

To find the particular solution, we will guess that its form is the same as
g(t) (Also see table in text):

gi(t)is : | The ansatz for y,, :

P,(t) ant" + ...+ axt? + art + ag

P,(t)et et (apt" 4+ ...+ axt? 4 art + ap)

Po(t)ect { sin(3t) et cos(Bt)(ant" + ... + axt? + art + ap)+
cos(ft) e“tsin(Bt)(bpt" + ... + bat? + byt + by)

v
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Undetermined Coefficients

Solve y"" +2y' +y =et
Problem: With the ansatz y, = Ae™ ", we get
0=et

The solution: Multiply the ansatz by t until it is no longer part of the
homogeneous solution (e.g., until L(y,) # 0).
Since yp(t) = Gie™t + Cote™t, we will need to multiply by t?. Our ansatz
is now

Yp = At?e~t
Note: Not a full second degree polynomial. Substitution yields A =1/2,
so the solution is:

1
y(t)y=e" (Cl + Gt + §t2>
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Undetermined Coefficients

Example

Let y” — y' — 2y = —4te® + e?. Give your (final) ansatz: First, get y}, for
comparison later:

r=-12 = yu(t)= Ge "+ Ce*
Now, for the first part of g, guess a degree 1 poly times exponential:
Vi (t) = (At + B)e

Check against the homogeneous solution: te! and e are NOT solutions.
Now for the second function:

Vpo(t) = Cet

We see et does solve L(y) = 0, so multiply by t: y,,(t) = Cte?t
The final ansatz for the form of the particular solution is then:

At + B)et + Cte?t
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Undetermined Coefficients

The final version of the Method (Same as the Table in the text):

The Method of Undetermined Coefficients

To find the particular solution, we will guess that its form is the same as
g(t) (Also see table in text):

gi(t)is : | The ansatz for y,, :

P,(t) t5(ant" + ...+ axt® + art + ag)

P,(t)et t5e¥(apt" + ...+ apt? + art + ag)

Po(t)eot { sin(ft) t5e®t cos(Bt)(ant” + ... + axt® 4+ art + ap)+
cos(3t) t5e®t sin(Bt)(bnt" + ... + byt + byt + by)

where s = 0,1, or 2.
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Undetermined Coefficients

Example
Give the ansatz for the particular part of the solution, if

y"+2y' +y = te'sin(2t)
First, check yp:
r=-1,-1 = y,=e¢ G+ Gt)
For yp: Is this correct?
yp(t) = e*(At + B)(Csin(t) + D cos(t))

No! The table says that we need a polynomial for each sine and cosine.
That is,

yp(t) = e ((At + B)sin(2t) + (Ct + D) cos(2t))
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Undetermined Coefficients

For each DE with the given forcing function, give the (final) form of the
ansatz. For your convenience, the roots to the characteristic equation are

also provided:
o g(t) =3t withr=0,-1 SOLN: y, = t(At + B)
o g(t) = tsin(3t) + €%t with r =2,3
¥p = (At + B)sin(3t) + (Ct + D) cos(3t) + Ate?t
o g(t) = 3cos(2t) with r = —1+2i

yp = Acos(2t) + Bsin(2t)
o g(t) = cos(wt) with r = fwi

yp = t(Asin(wt) + B cos(wt))
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