
Solutions (Last HW Set)

1. For each differential equation below, (i) convert into an equivalent system of first order
differential equations, (ii) Show that the characteristic equation we get from Chapter
3 is the same as the one for the eigenvalues. (iii) Classify the origin’s stability (using
Poincare), and (iv) Solve the equation (and the system).

(a) y′′ − y′ − 6y = 0

SOLUTION: Let x1 = y and x2 = y′. Then the system of DEs becomes:

x′1 = x2
x′2 = 6x1 + x2

⇒ A =

[
0 1
6 2

]
⇒ λ2 − λ− 6 = 0 λ = −2, 3

This is the same as the usual characteristic equation, r2 − r − 6 = 0. From the
eigenvalues, we can tell that the origin is a saddle (we could also use the Poincare
diagram). Solving the original equation:

y(t) = C1e
−2t + C2e

3t

Notice that to solve the system, x1 = y and x2 = y′, so that (in vector form), the
solution to the system is:[

x1
x2

]
= C1e

−2t
[

1
−2

]
+ C2e

3t

[
1
3

]
(b) y′′ − 2y′ + y = 0

Solving this the same way as the first one: Let x1 = y and x2 = y′. Then the
system of DEs becomes:

x′1 = x2
x′2 = −x1 + 2x2

⇒ A =

[
0 1
−1 2

]
⇒ λ2 − 2λ+ 1 = 0 λ = 1, 1

This is the same as the usual characteristic equation, r2 − 2r + 1 = 0. From the
eigenvalues, we can tell that the origin is a degenerate source (we could also use
the Poincare diagram). Solving the original equation:

y(t) = C1e
t + C2te

t

Notice that to solve the system, x1 = y and x2 = y′, so that (in vector form), the
solution to the system is:[

x1
x2

]
= C1e

t

[
1
1

]
+ C2e

t

(
t

[
1
1

]
+

[
0
1

])
From here you can see that [1, 1]T is the eigenvector and [0, 1]T is a generalized
eigenvector for the matrix.
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(c) y′′ + 2y′ + 5y = 0

SOLUTION: Continue as before-Let x1 = y and x2 = y′. Then the system of DEs
becomes:

x′1 = x2
x′2 = −5x1 − 2x2

⇒ A =

[
0 1
−5 −2

]
⇒ λ2+2λ+5 = 0 λ = −1+2i

This is the same as the usual characteristic equation, r2 + 2r + 5 = 0. From
the eigenvalues, we can tell that the origin is a spiral sink (we could also use the
Poincare diagram). Solving the original equation:

y(t) = C1e
−t cos(2t) + C2e

−t sin(2t)

Notice that to solve the system, x1 = y and x2 = y′, so that (in vector form), the
solution to the system is:

x1 = C1e
−t cos(2t) + C2e

−t sin(2t)
x2 = −C1e

−t cos(2t)− 2C1e
−t sin(2t)− C2e

−t sin(2t) + 2C2 cos(2t)

Simplifying:[
x1
x2

]
= e−t

(
C1

[
cos(2t)

− cos(2t)− 2 sin(2t)

]
+ C2

[
sin(2t)

− sin(2t) + 2 cos(2t)

])
Just for fun, you should see if you get the same thing by first computing the
eigenvector, etc. Here are the first few steps:

(0− (−1 + 2i))v1 + v2 = 0 ⇒ v1 = v1
v2 = (−1 + 2i)v1

⇒ v =

[
1

−1 + 2i

]
Now, if we compute eλtv, we get:

e−1+2i)t

[
1

−1 + 2i

]
= e−t(cos(2t) + i sin(2t))

[
1

−1 + 2i

]
=

e−t
[

cos(2t) + i sin(2t)
− cos(2t)− 2 sin(2t)− i sin(2t) + 2i cos(2t)

]
2. For each matrix A below, solve the system x′ = Ax by first converting the system into

a second order linear homogeneous DE with constant coefficients (then solve that).

(a)

[
2 −1
3 −2

]
⇒ x′1 = 2x1 − x2

x′2 = 3x1 − 2x2
SOLUTION: From the first equation, x2 = −x′1 + 2x1. Substituting it into the
second equation, we get

−x′′1+2x′1 = 3x1−2(−x′1+2x1) ⇒ x′′1−x1 = 0 ⇒ r2−1 = 0 ⇒ r = ±1

Therefore,

x1 = C1e
t + C2e

−t and x2 = −x′1 + 2x1 = C1e
t + 3C2e

−t
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For fun, we could write this in vector form as well:

x(t) = C1e
t

[
1
1

]
+ C2e

−t
[

1
3

]
It’s easy to verify that [1, 1]T is an eigenvector for λ = 1 and [1, 3]T is an eigenvector
for λ = −1

(b)

[
1 2
−5 −1

]
⇒ x′1 = x1 + 2x2

x′2 = −5x1 − x2
⇒ x2 =

1

2
(x′1 − x1)

Substituting into the second equation,

x′′1 + 9x1 = 0 ⇒ r2 + 9 = 0 ⇒ r = ±3i

Therefore,
x1 = C1 cos(3t) + C2 sin(3t)

And, since x2 = 1
2
(x′1 − x1), we have:

x2 =
1

2
(C1(− cos(3t)− 3 sin(3t) + C2(− sin(3t) + 3 cos(3t))

For extra fun, we might express this in vector form and compare to the eigenval-
ues/eigenvector solution to the system:

x(t) = C1

[
cos(3t)

−(1/2) cos(3t)− (3/2) sin(3t)

]
+C2

[
sin(3t)

−(1/2) sin(3t) + (3/2) cos(3t)

]
3. For each matrix A below, give the solution to x′ = Ax using eigenvalues and eigenvectors.

(a)

[
1 −1
1 3

]
SOLUTION: x(t) = e2t

(
C1

[
−1

1

]
+ C2

(
t

[
−1

1

]
+

[
0
1

]))
(b)

[
−1

2
1

−1 −1
2

]
⇒ λ = −1

2
+ i v =

[
−i

1

]
x(t) = e−t/2

(
C1

[
sin(t)
cos(t)

]
+ C2

[
− cos(t)

sin(t)

])
(c)

[
−1 −1

0 −1
4

]
x(t) = C1e

−t/4
[
−4

3

]
+ C2e

−t
[

1
0

]
(d)

[
3 −2
4 −1

]
⇒ λ = 1 + 2i v =

[
1 + i

2

]
x(t) = et

(
C1

[
cos(2t)− sin(2t)

2 cos(t)

]
+ C2

[
sin(2t) + cos(2t)

2 sin(t)

])
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4. For each system below, (i) Find all equilibrium solutions, (ii) Linearize the DE about
each, and (iii) Use the Poincaré Diagram to analyze the stability. Finally, go online to
the phase plane plotter and see if your analysis is correct.

(a)
x′ = 1− y
y′ = x2 − y2

SOLUTION: The equilibria are (1, 1) and (−1, 1). The Jacobian matrix is:

J =

[
0 −1

2x −2y

]
J(1, 1) =

[
0 −1
2 −2

]
J(1,−1) =

[
0 −1
−2 −2

]
Therefore, at (1, 1) we have a spiral sink and at (1,−1) there is a saddle.

(b)
x′ = cos(y)
y′ = sin(x)

The cos(y) is zero at odd multiples of π/2, and sin(x) is zero at integer multiples
of π. Looking at the Jacobian,

J =

[
0 − sin(y)

cos(x) 0

]
There are four possible matrices:[

0 1
1 0

] [
0 −1
1 0

] [
0 1
−1 0

] [
0 −1
−1 0

]
For example, the first matrix is where sin(y) = −1 (if y = 3π/2, 7π/2, 11π/2, etc)
and cos(x) = 1 (at x = 0, 2π, 4π, etc). The classification for each point then:
The first and last matrices correspond to saddles, and the middle two matrices
correspond to centers.
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(c)
x′ = (2 + x)(y − x)
y′ = (4− x)(y + x)

The equilibria are (0, 0), (−2, 2) and (4, 4). The Jacobian matrix is then:

J =

[
y − 2x− 2 2 + x
−y − 2x+ 4 4− x

]
Evaluated at the equilibria:

J(0, 0) =

[
−2 2

4 4

]
J(−2, 2) =

[
4 0
6 6

]
J(4, 4) =

[
−6 6
−8 0

]
Using a Poincare diagram, these points are (in order): A saddle, a source, and a
spiral sink.

5. Sometimes nonlinear differential equations can be solved by means of methods from
Chapter 2, where we convert the system using dx/dt, dy/dt to dy/dx (we’ve already
done a few of these). Here are some more (one linear one just for fun), as a start to your
review for the final! Remember, each DE may be classified in multiple ways, so if you
get stuck using one technique, you might try another.
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(a)
x′ = 2y − 2
y′ = −(2x+ 3)

⇒ (2y − 2) dy = −(2x+ 3) dx

Therefore, this is separable (and exact), and the implicit solution is:

x2 + 3x+ y2 − 2y = C

I’ve written the solution to emphasize that these solutions are circles. Here is the
direction field:

(b)
x′ = y(1− x3)
y′ = x2

⇒ y dy =
x2

1− x3
dx

The overall implicit solution is therefore 1
2
y2 = −1

3
ln |1−x3|+C, and the direction

field is below.

(c)
x′ = x− y
y′ = y − 4x

This is homogeneous:
dy

dx
=

y
x
− 4

1− y
x
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So we substitute v = y
x

or y = xv, and y′ = xv′ + v:

xv′ + v =
v − 4

1− v
⇒ 1− v

v2 − 4
dv =

1

x
dx

Now we can use partial fractions on the expression to the left:

1− v
v2 − 4

=
A

v − 2
+

B

v + 2
= −1

4

1

v − 2
− 3

4

1

v + 2

so that:

−1

4
ln |v − 2| − 3

4
ln |v + 2| = ln |x|+ C

Remember to back-substitute; simplification doesn’t yield much info:

−1

4
ln |(y/x)− 2| − 3

4
ln |(y/x) + 2| = ln |x|+ C

(d)
x′ = ex cos(y) + 2 cos(x)
y′ = 2y sin(x)− ex sin(y)

This one is exact:

−(2y sin(x)− ex sin(y)) dx+ (ex cos(y) + 2 cos(x)) dy = 0

so that My = −2 sin(x) + ex cos(y) = Nx. Now, using M for the antiderivative,

f(x, y) = 2y cos(x) + ex sin(y) +H(y)

and differentiating with respect to y, we get N :

fy = 2 cos(x) + ex cos(y) +H ′(y)

so H ′(y) = 0, and we can now form the solution:

2y cos(x) + ex sin(y) = C
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